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Mitigating Bias to Improve Fairness in Predictive 
Risk Modeling Using Healthcare Data: An Analysis 
of Long COVID Risk  

Background. Algorithmic bias in healthcare predictive risk models can worsen existing health 
inequities, making bias mitigation crucial for responsible model development and implementation. 
Our study examined ways to improve fairness across both univariable and multivariable protected 
attributes using leading bias mitigation methods and measures of performance and fairness, aiming 
to provide researchers with guidance for how to test and improve algorithmic fairness. We conduct 
our analysis using predictive risk models for long COVID, an area of significant societal interest, as a 
case study to demonstrate effective strategies for addressing bias in predictive modeling. 

Data sources. Our study used previously developed long COVID machine learning models applied to 
a sample of 1.23 million participants from the National COVID Cohort Collaborative (N3C), a 
longitudinal EHR data repository from 80 sites in the United States with more than 8 million COVID-
19 patients. 

Methods. We analyzed model fairness for the protected attributes of sex, race, and ethnicity by 
comparing performance and fairness metrics before and after applying bias mitigation techniques. 
Our evaluation focused on three leading algorithmic bias mitigation methods: reweighting, MAAT 
(Mitigating Algorithmic Bias with Adversarial Training), and FairMask. The analysis included both 
single and multiple protected attributes, using performance metrics (AUROC [area under the receiver 
operating characteristic curve] and PRAUC [area under the precision-recall curve]) and common 
fairness metrics (equal opportunity, predictivity equality, and disparate impact). 

Findings. Our results demonstrate that applying bias mitigation techniques can improve fairness 
while maintaining model performance, as observed through monitoring key performance and 
fairness metrics. Across a variety of bias mitigation techniques, FairMask achieved the most 
significant gains in fairness for single protected attribute, with minor trade-offs for other attributes. 
Reweighting was more effective at boosting predictive performance metrics, but when optimizing 
performance or fairness with respect to one specific protected attribute, the performance and 
fairness for other attributes varied. 

Conclusion. When building predictive risk models in healthcare, researchers should carefully 
consider the inclusion of protected attributes, monitor key performance and fairness metrics, and 
implement strategies for mitigating bias where needed. Testing and improving algorithmic fairness 
will ensure that predictive models contribute to more equitable healthcare outcomes, where 
algorithmic findings – such as those from long COVID predictive risk models – directly influence 
patient care, clinical decision-making, and policy. 

https://www.medrxiv.org/content/10.1101/2024.02.08.24302528v2
https://ncats.nih.gov/research/research-activities/n3c/overview
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Introduction 
Model fairness 

Machine learning models have gained popularity across various fields, including health services research, 
due to their ability to predict outcomes for unseen data.1 These models can be used to help us make 
decisions because of their ability to synthesize large amounts of input data to make predictions. However, 
a model’s predictive performance might be higher or lower for various subpopulations due to biases 
within the training data or model specification. Unchecked predictive models can perpetuate disparities 
and embed bias into systems, potentially harming certain groups. 

With the rise in use of machine learning models, researchers are thinking about how to measure 
algorithmic fairness and mitigate algorithmic bias in predictive models that use health care data, such as 
EHRs.2 In this white paper, we explore various methods of measuring algorithmic fairness and mitigating 
bias in predictive risk models built using EHR data. We provide results and examples in the context of 
identifying patients at risk of long COVID. 

Background in long COVID 

By November 2022, 94% of the US population was estimated to have contracted COVID at least 
once.3This proportion continues to rise as COVID-19 remains a widespread public health threat. Some 
people recover quickly after the initial infection, while others (between 10% to 30%) continue to 
experience symptoms even months after the initial infection.4 Long COVID is defined by the World Health 
Organization (2021) as persistent COVID symptoms and/or long-term complications following a probable 
or confirmed infection.5 

We focused on models that predict patients’ risk of developing long COVID, as many challenges exist 
around identifying patients with elevated risk (e.g. long-term effects may exhibit differently for different 
people, and difficulties in tracking long-term and varying symptoms). Predicting risk of long COVID can 
help the public health sector identify population segments at elevated risk for long COVID in order to 
design and implement targeted intervention strategies and help the healthcare sector prepare to 
understand the demand for long COVID treatment and provide better patient care. 

Potential for bias in long COVID predictive modeling 

Long COVID prediction is important because timely risk assessment of long COVID outcomes can improve 
patient care and inform policy and health care resource allocation. However, there are serious concerns 
about bias in long COVID identification and modeling.6,7 Disparities by sex, race, and ethnicity, and social 
economic status in COVID-19 patient outcomes have been well-documented.8,9 For example, while males 
have higher risk for severe COVID outcomes such as death and intensive care unit admission, females are 
more likely to suffer from long COVID.10 In addition, compared with White patients, patients from racial 
and ethnic minority groups had significantly different odds of developing long COVID-related conditions 
and symptoms.11 

Researchers must carefully examine model fairness across different subgroups to achieve optimal and fair 
clinical decision-making. In our literature review, we found recommendations on about how to avoid 
algorithmic bias, measure model fairness, and mitigate bias for predictive COVID-19 models, as well as for 
other models that use EHR data.2,12 We found a study that predicted COVID-19 patient outcomes that 
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checked if the models achieved similar area under the receiver operating characteristic curve (AUROC) 
scores for sex and race subgroups.13 The authors concluded that the models were fair because the AUROC 
for all the subgroups were similar and above 80 percent, so the models could be equitably applied across 
these demographic characteristics—which aligns with federal guidelines that recognize 80 percent as a 
standard for evaluating fairness. However, we did not find peer-reviewed studies on predictive long 
COVID models that included checks for algorithmic fairness or bias mitigation.6,14,15 

Our contribution 

In this white paper, we use our previously developed long COVID risk prediction models as a starting 
point to explore algorithmic fairness and performance metrics and bias mitigation methods.16 We 
optimize for protecting single attributes separately and multiple protected attributes simultaneously using 
various bias mitigation methods. Lastly, we make recommendations on the best metrics and methods to 
use for mitigating bias.  

This paper provides guidance to other researchers for how to test and improve algorithmic fairness. 
Ensuring the fairness and equity of models is an essential consideration in healthcare settings, where 
algorithmic findings – such as those from long COVID predictive risk models – directly influence patient 
care, clinical decision-making, and policy. 

Methods 
Data source and model specification 
We used the same analytic sample, covariates, model specifications, and bootstrapping methods as our 
previously developed long COVID predictive risk models.16 The sample included 1.23 million participants 
from the National COVID Cohort Collaborative (N3C), a longitudinal EHR data repository with information 
on more than 8 million COVID-19 patients from 80 sites in the United States. We defined long COVID 
using three symptom clusters: fatigue symptoms (4.7 percent of patients in sample), respiratory symptoms 
(2.5 percent of patients in sample), and cognitive symptoms (0.2 percent of patients in sample) (Table A.1).  

We trained two types of machine learning models—binary logistic regression (LR) and binary random 
forest (RF)—on all three long COVID symptom clusters separately. We used a 70-30 train-test split; 
because the symptom clusters were rare outcomes, we trained the models on downsampled data and 
tested them on the original unbalanced test data. Results are averaged across 100 bootstrap samples 
from the training data and for the fatigue symptom cluster models, unless otherwise specified. We 
provide results for the cognitive and respiratory symptom cluster models in the appendix. 

Comparing fairness metrics 

We evaluated the fairness of the model predictions using three fairness metrics: equal opportunity ratio 
(EOR), predictivity equality ratio (PER), and disparate impact ratio (DIR). All three metrics compare aspects 
of model performance between a privileged group and an unprivileged group. To model fairness for a 
single protected attribute, we considered our protected attributes as binary categories. We specified the 
unprivileged group as the second largest non-missing category for the demographic categories sex 
(male), race (Black or African American), and ethnicity (Hispanic or Latino). We specified all other 
demographic sex, race, and ethnicity categories as the privilege group. Because the U.S. federal 
government considers a fairness rating below 80 percent to constitute disparate impact, we aimed for our 
models to achieve fairness of near or above 80 percent.17 

https://www.medrxiv.org/content/10.1101/2024.02.08.24302528v2
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The DIR, also known as the statistical parity ratio, is the ratio of the percent predicted as positive for the 
privileged versus unprivileged groups. The DIR is useful when there is concern that historic bias could 
cause higher rates of mislabeled results for some subgroups than others in the training data. Uneven 
mislabeling rates could lead to inaccurate observed positive and negative values.18 For example, there is 
potential bias in the patients included in the EHR data and in the rates that long COVID symptoms are 
correctly identified. 

The EOR is the ratio of true positive rates for the unprivileged compared to the privileged group.19 The 
EOR is helpful when there are concerns about higher false negative rates for the unprivileged group, 
which could be an equity concern if the model is used to identify patients for beneficial services. For 
example, this could be an issue if the long COVID models were used to identify which patients at high risk 
of long COVID could receive selective preventive long COVID treatment.  

The PER is the ratio of false positives for the privileged group when compared with the unprivileged 
group. The PER is helpful when there are concerns about higher false positive rates in the unprivileged 
group, which could be an equity concern if the model is used to identify patients for punitive actions. For 
example, this might be an issue if an insurance company used long COVID models to identify patients at 
high risk of long COVID for the purpose of increasing their health insurance premium. 

Comparing metrics of model performance  

We checked that our models achieved similar performance across different subgroups by sex (male, 
female, and other), race (White, Black or African American, Asian, Native Hawaiian and Pacific Islander 
[NHPI], other, and missing/unknown), and ethnicity (Hispanic or Latino, not Hispanic or Latino, and 
missing/unknown).  

We calculated model performance using two common metrics for binary classification models: AUROC 
and the area under the precision-recall curve (PRAUC). Both AUROC and PRAUC scores range from 0 to 1, 
with higher scores indicating stronger model performance. The two scores cannot be directly compared 
because they measure distinct aspects of model performance. Although PRAUC scores tend to be lower 
than AUROC scores, this does not mean that AUROC scores are better for measuring model 
performance.20 

The AUROC measures a model’s ability to distinguish between the positive and negative classes by 
computing the likelihood that the model makes an incorrect prediction (false positive or false negative). 
The AUROC weights all incorrect predictions equally and is robust against imbalanced data sets.20  

The PRAUC measures a model’s precision (the number of positives correctly identified compared with 
predicted positives) relative to the model’s recall (the number of positives correctly identified compared 
with all positives). This measure focuses more on the positive class than the negative class, which helps 
evaluate the trade-off between reducing false positives and false negatives. However, when there is class 
imbalance, PRAUC could be biased toward subpopulations with a higher prevalence of positive 
predictions.20  

Bias mitigation methods 

If the performance and fairness metrics uncover bias between subgroups, various techniques can be 
applied to improve the model’s fairness.  
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We selected three methods to mitigate algorithmic bias: reweighting, Mitigating Algorithmic Bias with 
Adversarial Training (MAAT), and FairMask. This decision was guided by a benchmarking paper, “Fairness 
Improvement with Multiple Protected Attributes,” which evaluated 11 methods of correcting fairness.21 
The paper primarily focuses on sex and race as protected attributes, but we were guided by its 
conclusions on multidimensional fairness and performance trade-offs. The benchmark has also been 
conducted on two health care-related data sets, making it relevant to our work. 

Reweighting adjusts the training data (a “pre-processing” approach to bias reduction) by assigning 
different weights to different observations based on their protected attribute values and observed 
outcomes. This method reduces bias by giving higher weights to underrepresented or disadvantaged 
groups and lower weights to privileged groups. In this process, the training data is reweighted to balance 
the impact of protected groups, enabling the model to make fairer predictions for each subgroup. This 
approach ensures that the model does not disproportionately favor one group over another, particularly 
when optimizing for a single protected group such as sex or race.22 

Mitigating Algorithmic Bias with Adversarial Training (MAAT) is an ensemble approach aimed at 
addressing the fairness-performance trade-off in machine learning. It is an “in-processing” technique, 
meaning it reduces bias by adjusting the model-fitting process itself, rather than ‘pre-processing’ 
methods that modify the data beforehand. Unlike traditional ensemble methods that optimize for a single 
objective, MAAT combines two models: one focused on performance and the other on fairness. The 
fairness model uses a debugging technique for the training data which corrects biases in the data by 
transforming it via a "We’re All Equal" worldview. This technique resamples the biased data, balancing the 
representation of privileged and unprivileged groups. MAAT then averages the predictions of both 
models to produce a final decision, enhancing fairness without significantly compromising performance.23 

FairMask, another “in-processing” approach, operates by learning a separate classifier for each protected 
attribute, such as sex or race. This classifier predicts artificial values for the protected attribute, masking 
the true values during training and testing. By using artificial values, FairMask ensures that the protected 
attribute does not overly influence the model’s predictions. This approach produces fairer outcomes by 
reducing bias in the protected attribute without directly altering the model’s architecture or performance 
metrics.22 

Extending mitigation methods to multiple attributes to improve fairness 

Our mitigation methods can be easily adapted to improve fairness across multiple protected attributes. 
Here, "multiple attributes" means considering the intersections of all protected attributes to form 
subgroups. Specifically, we had three binary protected attributes—sex (male), ethnicity (Hispanic or 
Latino), and race (Black or African American)—which allow for eight possible combinations.  

Optimizing for multiple attributes involves considering all eight subgroups rather than optimizing for a 
particular group such as the male group. Reweighting calculates weights using combinations of protected 
attributes. MAAT trains multiple fairness models with the We’re All Equal worldview for each protected 
variable individually and combines them to adjust the final prediction. Lastly, FairMask generates artificial 
values for all protected attributes individually to build the final model. 

After mitigating bias across combinations of protected attributes, we assessed fairness and performance 
using the AUROC and PRAUC metrics. In addition to our single attribute measures, we also included 
intersectional metrics to capture the differences across subgroups formed by combinations of protected 
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attributes. These metrics help identify performance gaps by measuring the disparities between the 
maximum and minimum values across subgroups. Specifically, we introduced three intersectional metrics: 
intersectional disparate impact difference (IDID), intersectional equal opportunity difference (IEOD), and 
intersectional predictive equality difference (IPED). 

However, computational complexity presents a challenge in the multiple attributes setting. Adding 
attributes increases computational complexity exponentially, which can make computation 
unmanageable. Reweighting simply adjusts weights for attribute combinations and thus scales more 
efficiently than MAAT and FairMask, especially when there are large numbers of protected attributes. 
MAAT and FairMask require more computational resources in the multiple attributes setting because they 
involve either training multiple fairness models or generating artificial values for each subgroup by 
training independent models. 

Results 
Baseline model performance and fairness 

Model fairness 

For sex, the RF model had noticeably higher fairness scores (DIR, EOR, PER) than the LR model. For the 
other protected attributes (race, ethnicity), the RF and LR models had similar fairness scores (Figure 1 and 
Table 1). This could indicate the RF model is a fairer machine learning model than LR before any bias 
mitigation method is applied. 

The binary protected attribute race and ethnicity had high fairness scores at baseline for both the LR and 
RF models. However, the LR and RF models had lower fairness scores for sex. This indicates that the LR 
and RF models for race and ethnicity met the 0.80 disparate impact threshold but had meaningful 
differences in model predictions between the unprivileged (male) and privileged (female and other) sex 
subgroups.  

For the sex protected attribute, EORs were higher than DIRs and PERs. This difference signals that there 
are smaller differences in the percent predicted as positive rates for patients in the privileged and 
unprivileged subgroups, and larger differences in the false positive rates between subgroups. 



Health Research Brief 

Mathematica® Inc. 7 

Model performance 

Within the baseline LR and RF models, there were similar AUROC values for the sex, race, and ethnicity 
subgroups. This result indicates that our models had similar rates of correct predictions across subgroups 
(Figure 2 and Table 2). For the ethnic subgroups, the range of AUROCs was 1 percentage point for the LR 
model and 2 percentage points for the RF model. There were similarly small ranges of values for the sex 
subgroups (except for the “sex other” subgroup in the RF model). There was a slightly larger range of 
AUROC values for the racial subgroups, with all the AUROCs measuring around 0.60. The broad range is 
likely due to the small sample size of some racial subgroups, such as NHPI with fatigue long COVID 
symptoms (n = 61).  

The one exception to the pattern of similar AUROCs within subgroups was the LR model “sex other” 
subgroup, which had a remarkably high AUROC. This was likely caused by the small number of patients in 
our sample who marked “sex other” and had the fatigue long COVID outcome (n < 20). For the single 
variable models, the sex subgroups “female” and “other” are combined; therefore, the small sample size 
for “sex other” had minimal effect on single variable model fairness.  

The PRAUCs were lower than the AUROCs for all subgroups in both the RF and LR models. Whereas 
overall model accuracy is relatively high, the model precision (ratio of true positives to predicted positive) 
is low. Between the model subgroups, PRAUC values vary more than AUROC values, indicating there were 

Figure 1. The models showed meaningful differences in fairness measures for the single 
protected attribute sex. However, the fairness metrics for race and ethnicity met the 80% 
threshold at baseline. 

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave.  
Note: Results are shown as the average across 100 bootstrap samples for each model specification.  
-- 80% fairness measure threshold 
DIR = disparate impact ratio (also known as the statistical parity ratio); EOR = equal opportunity ratio; PER = predictive equality 
ratio. 
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higher rates of false positives for some subgroups than others. For example, for the RF sex subgroup, 
PRAUC for female (PRAUC = 0.36) is 10 percentage points higher than the male (PRAUC = 0.26).  

Mitigating bias for a single protected attribute 

Model fairness 

For the protected attribute sex, reweighting and FairMask showed substantial improvements in the 
fairness metrics for the LR model (Figure 3 and Table 1). MAAT had no effect on the fairness metrics for 
the LR model for the protected attribute sex. There was a similar pattern for the RF model. This indicates 
that reweighting and FairMask are preferable bias mitigation techniques for our LR and RF models.  

Figure 2. At baseline, the models had mostly consistent AUROCs between subgroups, while 
PRAUCs were lower and had more variation between subgroups. 

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. 
AUROC = area under the receiver operating characteristic curve; PRAUC = area under the precision-recall curve. 
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However, mitigating bias for one protected attribute at a time can negatively impact the fairness of the 
other protected attributes. While we observed significant improvements when optimizing fairness for sex, 
a closer look reveals trade-offs in race and ethnicity. For example, using reweighting and FairMask to 
optimize sex fairness led to small decreases in fairness scores for race and ethnicity (Figure 4). Applying 
reweighting to the LR model led to decreased fairness (by 0.14 for DIR, 0.08 for EOR, and 0.15 for PER) for 
the ethnicity protected attribute. This was the largest decrease in fairness due to mitigating bias for a 
single protected variable. For most of the models, reweighting, MAAT, and FairMask had minimal effect 
on the fairness of the non-protected attributes.  

Figure 3. When optimizing for the single protected attribute sex, reweighting and FairMask 
greatly improved the fairness measures, but MAAT did not. The bias mitigation methods did 
not meaningfully improve the fairness measures for the single protected attributes race or 
ethnicity.  

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. When optimizing bias 

mitigation for a single protected attribute, we specified the unprivileged group as the second largest non-missing 
category of the protected attribute: sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). 

-- 80% fairness measure threshold 
DIR = disparate impact ratio (also known as the statistical parity ratio); EOR = equal opportunity ratio; MAAT = mitigating 
algorithmic bias with adversarial training; PER = predictive equality ratio. 
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For the protected attributes race and ethnicity, none of the bias mitigation methods led to meaningful 
improvements in fairness metrics for either the LR or RF models (Figure 3). This could be because the 
fairness metrics values were high in the baseline models, so there was less room for improvement. 
Remarkably, FairMask decreased fairness metrics when compared with baseline for the protected variable 
race in the LR and RF models and ethnicity for the RF model. These results suggest that if a model’s 
prediction at baseline is fair for the target protected attributes, mitigating bias might not change or might 
even decrease the model’s fairness.  

Model performance 

For the protected attribute sex, reweighting and FairMask caused noticeable trade-offs between PRAUCs 
for the male and female subgroups for the fatigue LR and RF models (Figure 5 and Table 2). For the LR 
model, PRAUC for the male subgroup (the protected group) increased from baseline by 10 percentage 
points and by 12 percentage points with reweighting and FairMask. On the other hand, for the same 
model, PRAUC for the female subgroup decreased from baseline by 14 percentage points and by 11 
percentage points with reweighting and FairMask, respectively. The RF models show similar directional 
changes in PRAUC for the male and female subgroups. Reweighting and FairMask brought PRAUC for the 
male and female subgroups closer together, which improved the fairness metrics. The AUROCs for male 
and female remained consistent or slightly improved with reweighting and FairMask. This indicates that 
the rates of false negatives and false positives changed proportionally, leading to the smaller visible 
effects when compared with PRAUC. 

Figure 4. Optimizing for the single protected attribute sex, improvements in fairness 
measures sometimes negatively affected fairness measures for race and ethnicity.  

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. When optimizing bias 

mitigation for the protected attribute sex, we specified the unprivileged group as male. 
DIR = disparate impact ratio; EOR = equal opportunity ratio; PER = predictive equality ratio. 
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For the protected attributes of race and ethnicity, reweighting, MAAT, and FairMask had a less noticeable 
impact on the race and ethnicity subgroups’ AUROC and PRAUC values for both the LR and RF models 
(Table 2). This is consistent with the smaller changes in fairness metrics for the racial and ethnic subgroups 
after mitigating bias. 

Mitigating bias for multiple protected attributes  

In this section, we present the results of optimizing all three protected attributes together. Although 
performance is shown for individual attributes like sex, the model was optimized for all attributes 
simultaneously, unlike earlier, where each attribute was optimized separately. We also introduce 
intersectional fairness metrics, where smaller values indicate reduced disparities and improved fairness 
across subgroups. 

Fairness for multiple protected attributes 

In sum, FairMask consistently delivered the most substantial improvements in fairness, particularly for the 
sex attribute, across LR and RF models. In LR, FairMask achieved significant gains for sex but lowered race 
fairness moderately. In RF, the trade-offs were more evenly distributed, resulting in smaller declines in 
fairness for race and minimal impact on ethnicity. Reweighting offered modest improvements in LR, 
especially for sex, but showed a slight decreasing trend across all attributes in RF. MAAT had little effect 
on fairness metrics in either model, remaining close to baseline (Figure 6 and Table 3). 

Figure 5. Reweighting and FairMask improved PRAUC for the male subgroup but decreased 
PRAUC for the female and sex other subgroups when optimizing for the single protected 
attribute sex. 

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. When optimizing bias 

mitigation for the protected attribute sex, we specified the unprivileged group as male. 
MAAT = mitigating algorithmic bias with adversarial training; PRAUC = area under the precision-recall curve. 
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Reweighting 

Reweighting in LR showed moderate improvements for sex, indicating some success in enhancing fairness 
for this attribute. However, the changes for race and ethnicity were minimal, with fairness metrics 
remaining largely stable. This suggests that while reweighting offered a more balanced approach to 
fairness optimization when compared with FairMask, the overall impact was less substantial. The moderate 
gains in sex fairness did not come at a significant cost to race or ethnicity, making reweighting a less 
impactful but safer choice for fairness adjustments in LR. 

In contrast, reweighting in RF resulted in very subtle changes across fairness metrics, with a slight 
decreasing trend for all attributes. For instance, DIR for race decreased by 0.05 for Black or African 
American and PER for ethnicity decreased by 0.03 for Hispanic or Latino. Although these changes were 
minimal, they highlight the lesser effectiveness of reweighting in RF when compared with LR, where it had 
a more positive impact on sex fairness. The minimal improvements suggest reweighting may be less 
suited to RF, where the baseline fairness was already higher. 

Looking at intersectional metrics, reweighting presented more nuanced results. In LR, IEOD slightly 
decreased, reflecting improved fairness in true positive rates, while IDID and IPED increased slightly, 
indicating a rise in disparities for false positive rates and disparate impact. In RF, all intersectional metrics 
(IDID, IEOD, and IPED) increased, signaling a worsening of fairness. This could suggest reweighting may 
have over-prioritized optimizing the larger subgroups, worsening fairness for smaller groups in RF. 

MAAT 

MAAT showed no significant changes in fairness metrics for either LR or RF, with values remaining close to 
baseline across all protected attributes. This indicates MAAT’s limited ability to mitigate biases when 
optimizing for multiple attributes. The lack of effect on intersectional metrics further reinforces MAAT’s 
neutrality, as these values remained identical to baseline in both models. 

FairMask 

In LR, FairMask achieved the most significant improvements for sex, reflecting the influence of the male 
subgroup, which comprised about 44 percent of the data set. These gains came with some reductions for 
race, indicating a higher cost to fairness for race in LR when compared with RF. Ethnicity remained largely 
stable. Despite these trade-offs, FairMask still managed to balance fairness across attributes, achieving 
significant improvements for sex without severely compromising fairness for race or ethnicity. Notably, 
fairness metrics for RF ended up higher than those for LR. 

With RF, FairMask also significantly improved fairness for sex, but the trade-offs for race and ethnicity 
were more evenly distributed when compared with LR. The declines for race were modest and the impact 
on ethnicity was minimal. This indicates that FairMask in RF was more effective at balancing fairness 
improvements across all protected attributes, reducing disparities without significantly affecting any one 
attribute. 

FairMask demonstrated the most significant reductions in intersectional fairness metrics across both LR 
and RF models. In LR, FairMask significantly reduced IDID, IEOD, and IPED, with similar reductions 
observed in RF. These improvements suggest FairMask reduced disparities between smaller subgroups 
and larger groups. Lower IEOD indicated that true positive rates for smaller subgroups, such as minorities, 
were more aligned with the majority group, while lower IPED shows that false positive rates were more 
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comparable between the groups as well. Overall, FairMask substantially reduced gaps in prediction quality 
across demographic intersections, making it a fairer and more accurate method of optimization. 

Performance for multiple protected attributes 

After applying bias mitigation techniques across all three protected attributes (sex, race, and ethnicity), 
the AUROC changes remained relatively small, typically within ±0.02. However, PRAUC values revealed 
more noticeable shifts. Reweighting generally showed better performance improvements, particularly in 
PRAUC, while FairMask had mixed impact. MAAT showed little to no change in performance metrics 
(Figure 7 and Table 4). 

Reweighting 

For LR, reweighting showed consistent improvements across most subgroups. PRAUC values increased for 
several subgroups, such as male, female, and white. The “sex other” subgroup, while representing a 
smaller portion of the population, saw minor improvement. For Hispanics or Latinos, the PRAUC increased 
moderately. Overall, reweighting had a positive effect on most subgroups, with only slight deviations in 
some cases. AUROC values, however, remained largely stable, with changes generally within ±0.02. 

Figure 6. Optimizing multiple attributes together, FairMask improved fairness, especially for 
sex, with trade-offs in race for LR and more balanced effects in RF. Reweighting showed 
modest gains and MAAT had little impact.  

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. When mitigating bias, we 

specified the unprivileged group as the second largest non-missing category of the protected attribute: sex (male), race 
(Black or African American), and ethnicity (Hispanic or Latino). 

-- 80% fairness measure threshold 
DIR = disparate impact ratio (also known as the statistical parity ratio); EOR = equal opportunity ratio; MAAT = mitigating 
algorithmic bias with adversarial training; PER = predictive equality ratio. 
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In the RF model, reweighting produced similarly positive results, with PRAUC improvements for the male 
subgroup, though the “sex other” subgroup experienced a slight decline. Despite this, the overall effect of 
reweighting was positive across subgroups. As with LR, AUROC changes remained small and close to 
baseline. 

MAAT 

MAAT had a neutral impact on performance across all subgroups, in both LR and RF. Neither AUROC nor 
PRAUC exhibited significant changes, mirroring MAAT’s minimal influence on fairness metrics. This 
stability suggests that MAAT had little effect on the models’ performance metrics overall. 

FairMask 

FairMask demonstrated a more mixed impact on performance, especially in LR. Some subgroups, like 
female and Hispanic or Latino, saw declines in PRAUC, while the male subgroup experienced moderate 
improvement. While FairMask improved fairness metrics for the protected groups, it occasionally 
overcorrected, leading to performance declines in smaller subgroups. Nonetheless, AUROC remained 
stable within the ±0.02 range, indicating that ranking ability was less affected than precision-recall trade-
offs. 

In RF, FairMask’s impact was similarly mixed, with subgroups like female and white experiencing declines, 
while male performance remained stable or improved slightly. As in LR, this suggests FairMask’s 
overcorrection in smaller subgroups led to diminished performance. 

Figure 7. Optimizing multiple attributes together, FairMask improved intersectional fairness 
by decreasing disparities across all models. Reweighting showed some gains in LR but 
worsened disparities in RF, and MAAT had no significant impact. 

 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. When mitigating bias, we 

specified the unprivileged group as the second largest non-missing category of the protected attribute: sex (male), race 
(Black or African American), and ethnicity (Hispanic or Latino). 

IDID= intersectional disparate impact difference; IEOD = intersectional equal opportunity difference; IPED = intersectional 
predictive equality difference; MAAT = mitigating algorithmic bias with adversarial training. 
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Discussion 
Recommendations  

We demonstrated application of the algorithmic fairness checks and bias mitigation methods to long 
COVID predictive models that use EHR data. Based on our analysis, we make the following 
recommendations to researchers developing predictive risk models using health care data. 

Identify areas of potential bias. This includes identifying potential bias in research questions, data 
sources, and modeling techniques. Mathematica’s blog post, Advancing Equity in Policy Research by 
Addressing Bias in Data Analytics, recommends additional steps to take at each step of the model 
development process.1 For example, the Tackling Algorithmic Bias in Health Care blog post shows that 
bias can be mitigated proactively in the data cleaning and model selection processes.24 

Select model type and parameterization with fairness in mind. We found that model selection and 
specification significantly influenced the baseline model’s fairness. For example, in our analysis of the 
fatigue symptom cluster, the RF model was sometimes fairer than the LR model before applying bias 
mitigation methods. When developing a statistical model, researchers should consider how the model 
type and parameterization could affect the fairness of the results. 

Select performance and fairness metrics based on the model’s application. Intended use of predictive 
risk model outputs can inform the relative importance of various aspects of model performance. In other 
words, consider the potential negative effects of the model predicting an individual incorrectly or 
differences in model performance between subgroups. 

Check for differences in model performance across demographic subgroups and intersectional 
subgroups at risk of bias. For our study, we aimed for the models to perform similarly among the 
demographic characteristics sex, race, and ethnicity. Depending on the model and research question, 
researchers might check model performance on other variables such as age, insurance status, or 
geographic location. Consider how subgroups intersect and how to address intersectional health equity. 
The blog post Intersectionality: Amplifying Impacts on Health Equity provides more guidance on 
intersectionality.25 

Before mitigating bias, confirm that subgroup differences are caused by algorithmic bias, not 
inherent differences. Distinguish between subgroup difference caused by algorithmic bias versus 
inherent differences between subgroups. If protected groups exhibit natural variations in health outcomes 
due to biological, social, or environmental factors, it is important to assess whether observed disparities 
reflect true differences or biases introduced by the model. Mitigating bias without this understanding risks 
masking meaningful variation rather than addressing actual unfairness. 

In our case, the improvements in fairness metrics (DIR, EOR, and PER) suggest some original disparities 
may have been due to bias in the model, but natural differences cannot be ruled out. Incorporating 
domain knowledge is crucial to determine if changes align with known health disparities. 

Bias mitigation should aim to correct unjust disparities while acknowledging legitimate differences. 
Fairness metrics, combined with domain expertise, can help ensure that true biases are targeted without 
obscuring real-world patterns. 

https://www.mathematica.org/blogs/advancing-equity-in-policy-research-by-addressing-bias-in-data-analytics
https://www.mathematica.org/blogs/advancing-equity-in-policy-research-by-addressing-bias-in-data-analytics
https://www.mathematica.org/blogs/tackling-algorithmic-bias-in-health-care
https://www.mathematica.org/blogs/intersectionality-amplifying-impacts-on-health-equity
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Understand the trade-offs presented by each bias mitigation method. When the baseline model 
fairness is insufficient, bias mitigation methods such as reweighting and FairMask can meaningfully 
improve model fairness without sacrificing model performance. In our case, FairMask provided the largest 
gains, especially for the sex attribute, with LR showing considerable improvements and RF achieving the 
best overall outcomes. On the other hand, reweighting offered reliable, steady improvements across 
subgroups without harming other attributes, making it a dependable option, even if the gains were 
smaller. This presents a choice between pursuing smaller but consistent gains across all attributes with 
reweighting, which is more computationally manageable, or opting for more substantial improvements in 
a single attribute such as sex using FairMask, with minor to moderate trade-offs in other variables and 
higher computational demands. Selecting a method of bias mitigation requires balancing fairness 
improvements with potential trade-offs based on the study’s context, goals, and resources available. 

Limitations 

While our work aims to act as a proof of concept and provide general recommendations, the analysis has 
limitations. First, we limited the scope of analysis to two common performance metrics (AUROC and 
PRAUC), three common fairness metrics (equal opportunity, predictive equity, and statistical parity), and 
three promising bias mitigation techniques (reweighting, MAAT, and FairMask). Second, our fatigue 
symptom cluster long COVID models had low overall performance (AUROC: 0.60/0.60 and PRAUC: 
0.36/0.37 for LR and RF, respectively). While these results align those of similar long COVID models, the 
models need to be improved before they are implemented.14 Finally, we protected only the second largest 
subgroup within each protected attribute, which may not adequately address fairness for all 
underrepresented subgroups. In addition, the second largest subgroup may not correspond to a society-
wide unprivileged group, as in our models, where the second largest sex subgroup was male. To ensure 
comprehensive fairness, it is important to consider protecting all subgroups within the protected 
category.26 
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Tables 
Table 1. Fairness metrics for baseline and after bias mitigation (using reweighting, MAAT, and FairMask), optimizing for a single 
protected attribute (sex, race, or ethnicity) 

Model 
type 

Protected 
attribute 

Disparate impact ratio (DIR) Equal opportunity ratio (EOR) Predictive equality ratio (PER) 

Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 
Logistic 
Regression 

Sex 0.17 0.91 ↑ 0.17 0.89 ↑ 0.31 0.98 ↑ 0.31 0.96 ↑ 0.16 0.92 ↑ 0.16 0.89 ↑ 
Race 0.86 0.84 ↓ 0.85 ↓ 0.79 ↓ 0.92 0.93 ↑ 0.91 ↓ 0.80 ↓ 0.85 0.84 ↓ 0.85 0.79 ↓ 
Ethnicity 0.90 0.91 ↑ 0.90 0.93 ↑ 0.93 0.94 ↑ 0.93 0.95 ↑ 0.89 0.91 ↑ 0.89 0.93 ↑ 

Random 
Forest 

Sex 0.56 0.93 ↑ 0.56 0.92 ↑ 0.71 0.97 ↑ 0.71 0.98 ↑ 0.56 0.93 ↑ 0.56 0.92 ↑ 
Race 0.87 0.88 ↑ 0.87 0.76 ↓ 0.85 0.86 ↑ 0.85 0.79 ↓ 0.87 0.88 ↑ 0.87 0.76 ↓ 
Ethnicity 0.88 0.89 ↑ 0.88 0.84 ↓ 0.91 0.91 0.91 0.88 ↓ 0.88 0.89 ↑ 0.88 0.84 ↓ 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. For bias mitigation optimizing for a single protected attribute, we specified the 

unprivileged group as the second largest non-missing category of the protected attribute: sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The 
Baseline columns represent the model fairness before any bias mitigation techniques are applied.  

↑ increase from baseline 
↓ decrease from baseline 
MAAT = mitigating algorithmic bias with adversarial training. 
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Table 2. Performance metrics by patient subgroup at baseline and after bias mitigation (using reweighting, MAAT, and FairMask), 
optimizing for a single protected attribute (sex, race, or ethnicity) 

Model type Protected attribute Demographic subgroup 
AUROC PRAUC 

Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 
Logistic 
Regression 

Sex All 0.60 0.59 ↓ 0.60 0.59 ↓ 0.35 0.28 ↓ 0.35 0.31 ↓ 
Female 0.57 0.58 ↑ 0.57 0.58 ↑ 0.43 0.29 ↓ 0.43 0.32 ↓ 
Male 0.57 0.60 ↑ 0.57 0.59 ↑ 0.17 0.27 ↑ 0.17 0.29 ↑ 
Other 0.56 0.64 ↑ 0.56 0.60 ↑ 0.26 0.25 ↓ 0.27 ↑ 0.25 ↓ 

Race All 0.60 0.60 0.60 0.60 0.35 0.35 0.35 0.36 ↑ 
White 0.59 0.59 0.59 0.59 0.37 0.37 0.37 0.37 
Black or African American 0.62 0.62 0.62 0.62 0.35 0.34 ↓ 0.35 0.42 ↑ 
Asian 0.57 0.58 ↑ 0.58 ↑ 0.58 ↑ 0.21 0.21 0.21 0.21 
NHPI 0.56 0.56 0.57 ↑ 0.57 ↑ 0.19 0.19 0.20 ↑ 0.20 ↑ 
Other 0.62 0.62 0.63 ↑ 0.62 0.34 0.33 ↓ 0.34 0.33 ↓ 
Missing or unknown 0.60 0.60 0.60 0.60 0.23 0.23 0.23 0.25 ↑ 

Ethnicity All 0.60 0.60 0.60 0.60 0.35 0.35 0.35 0.36 ↑ 
Not Hispanic or Latino 0.60 0.60 0.60 0.60 0.37 0.37 0.37 0.37 
Hispanic or Latino 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.35 ↑ 
Missing or unknown 0.59 0.59 0.59 0.61 ↑ 0.20 0.20 0.20 0.24 ↑ 

Random Forest Sex All 0.60 0.60 0.60 0.60 0.33 0.30 ↓ 0.33 0.30 ↓ 
Female 0.59 0.59 0.59 0.59 0.36 0.31 ↓ 0.36 0.31 ↓ 
Male 0.60 0.61 ↑ 0.60 0.61 ↑ 0.26 0.30 ↑ 0.26 0.29 ↑ 
Other 0.89 0.81 ↓ 0.89 0.83 ↓ 0.54 0.42 ↓ 0.54 0.45 ↓ 

Race All 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.34 ↑ 
White 0.59 0.59 0.59 0.60 ↑ 0.33 0.33 0.33 0.34 ↑ 
Black or African American 0.62 0.62 0.62 0.62 0.37 0.37 0.37 0.39 ↑ 
Asian 0.57 0.58 ↑ 0.57 0.56 ↓ 0.25 0.25 0.25 0.22 ↓ 
NHPI 0.55 0.55 0.55 0.55 0.22 0.22 0.22 0.21 ↓ 
Other 0.60 0.60 0.60 0.58 ↓ 0.29 0.29 0.29 0.24 ↓ 
Missing or Unknown 0.62 0.62 0.62 0.61 ↓ 0.27 0.27 0.27 0.26 ↓ 

Ethnicity All 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.33 
Not Hispanic or Latino 0.60 0.60 0.60 0.60 0.34 0.34 0.34 0.34 
Hispanic or Latino 0.60 0.60 0.60 0.60 0.31 0.31 0.31 0.30 ↓ 
Missing or Unknown 0.62 0.62 0.62 0.62 0.25 0.25 0.25 0.25 
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Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specification. For bias mitigation optimizing for a single protected attribute, we specified the 

unprivileged group as the second largest non-missing category of the protected attribute: sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The 
“All” rows are the AUROC and PRAUC for the model across demographic subgroups. The Baseline columns represent model performance before any bias mitigation 
techniques are applied.  

↑ increase from baseline 
↓ decrease from baseline 
AUROC = area under the receiver operating characteristic curve; MAAT = mitigating algorithmic bias with adversarial training; NHPI = Native Hawaiian or Pacific Islander; PRAUC = area 
under the precision-recall curve. 
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Table 3. Fairness metrics for fatigue symptom cluster before and after bias mitigation when optimizing multiple attributes 

Model 
type 

Protected 
characteristic 

Disparate impact ratio Equal opportunity ratio Predictive equality ratio 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

LR Sex 0.17 0.25 ↑ 0.17 0.90 ↑ 0.31 0.41 ↑ 0.31 0.99 ↑ 0.16 0.24 ↑ 0.16 0.90 ↑ 
Race 0.86 0.88 ↑ 0.86 0.72 ↓ 0.92 0.87 ↓ 0.91 ↓ 0.74 ↓ 0.85 0.88 ↑ 0.85 0.72 ↓ 
Ethnicity 0.90 0.90 0.90 0.92 ↑ 0.93 0.93 0.93 0.92 ↓ 0.89 0.90 ↑ 0.89 0.92 ↑ 
Intersectional  
metric 0.63 0.65 ↑ 0.63 0.18 ↓ 0.74 0.70 ↓ 0.74 0.26 ↓ 0.63 0.65 ↑ 0.63 0.17 ↓ 

RF Sex 0.56 0.50 ↓ 0.56 0.92 ↑ 0.71 0.68 ↓ 0.71 0.98 ↑ 0.56 0.50 ↓ 0.56 0.92 ↑ 
Race 0.87 0.82 ↓ 0.87 0.80 ↓ 0.85 0.84 ↓ 0.85 0.78 ↓ 0.87 0.81 ↓ 0.87 0.80 ↓ 
Ethnicity 0.88 0.85 ↓ 0.88 0.85 ↓ 0.91 0.89 ↓ 0.91 0.89 ↓ 0.88 0.85 ↓ 0.88 0.85 ↓ 
Intersectional  
metric 0.35 0.55 ↑ 0.35 0.18 ↓ 0.40 0.54 ↑ 0.40 0.27 ↓ 0.34 0.55 ↑ 0.34 0.17 ↓ 

Source  Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note:  Results are shown as the average across 100 bootstrap samples for each model specifications after optimizing the combination of all protected attributes. We specified the 

protected attribute as the second largest non-missing category for the demographic categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). 
The Baseline columns represent model fairness before any bias mitigation techniques are applied.  

↑ increase from baseline 
↓ decrease from baseline 
LR = Logistic Regression; MAAT = mitigating algorithmic bias with adversarial training; RF = Random Forest. 
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Table 4. Performance metrics for fatigue symptom cluster before and after bias mitigation when optimizing multiple attributes 

Model 
type Demographic subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

LR All 0.60 0.60 0.60 0.59 ↓ 0.35 0.38 ↑ 0.35 0.29 ↓ 
Sex: Female 0.57 0.56 ↓ 0.57 0.58 ↑ 0.43 0.45 ↑ 0.43 0.30 ↓ 
Sex: Male 0.57 0.58 ↑ 0.57 0.60 ↑ 0.17 0.21 ↑ 0.17 0.27 ↑ 
Sex: Other 0.56 0.55 ↓ 0.56 0.61 ↑ 0.26 0.27 ↑ 0.27 ↑ 0.25 ↓ 
Race: Asian 0.57 0.58 ↑ 0.58 ↑ 0.55 ↓ 0.21 0.22 ↑ 0.21 0.16 ↓ 
Race: Black or African American 0.62 0.62 0.62 0.61 ↓ 0.35 0.42 ↑ 0.35 0.35 
Race: Missing or unknown 0.60 0.61 ↑ 0.60 0.59 ↓ 0.23 0.29 ↑ 0.23 0.22 ↓ 
Race: NHPI 0.56 0.56 0.57 ↑ 0.55 ↓ 0.19 0.20 ↑ 0.20 ↑ 0.17 ↓ 
Race: Other 0.62 0.63 ↑ 0.63 ↑ 0.58 ↓ 0.34 0.36 ↑ 0.34 0.30 ↓ 
Race: White 0.59 0.59 0.59 0.58 ↓ 0.37 0.39 ↑ 0.37 0.29 ↓ 
Ethnicity: Hispanic or Latino 0.60 0.60 0.60 0.58 ↓ 0.33 0.40 ↑ 0.33 0.27 ↓ 
Ethnicity: Missing or unknown 0.59 0.60 ↑ 0.59 0.58 ↓ 0.20 0.21 ↑ 0.20 0.19 ↓ 
Ethnicity: Not Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.37 0.39 ↑ 0.37 0.30 ↓ 

RF All 0.60 0.60 0.60 0.60 0.33 0.37 ↑ 0.33 0.30 ↓ 
Sex: Female 0.59 0.57 ↓ 0.59 0.59 0.36 0.41 ↑ 0.36 0.31 ↓ 
Sex: Male 0.60 0.61 ↑ 0.60 0.61 ↑ 0.26 0.29 ↑ 0.26 0.30 ↑ 
Sex: Other 0.89 0.85 ↓ 0.89 0.75 ↓ 0.54 0.53 ↓ 0.54 0.36 ↓ 
Race: Asian 0.57 0.59 ↑ 0.57 0.57 0.25 0.29 ↑ 0.25 0.24 ↓ 
Race: Black or African American 0.62 0.61 ↓ 0.62 0.62 0.37 0.42 ↑ 0.37 0.36 ↓ 
Race: Missing or unknown 0.62 0.63 ↑ 0.62 0.61 ↓ 0.27 0.33 ↑ 0.27 0.26 ↓ 
Race: NHPI 0.55 0.56 ↑ 0.55 0.54 ↓ 0.22 0.27 ↑ 0.22 0.21 ↓ 
Race: Other 0.60 0.64 ↑ 0.60 0.59 ↓ 0.29 0.36 ↑ 0.29 0.25 ↓ 
Race: White 0.59 0.59 0.59 0.59 0.33 0.37 ↑ 0.33 0.30 ↓ 
Ethnicity: Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.31 0.40 ↑ 0.31 0.28 ↓ 
Ethnicity: Missing or unknown 0.62 0.63 ↑ 0.62 0.62 0.25 0.28 ↑ 0.25 0.26 ↑ 
Ethnicity: Not Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.34 0.37 ↑ 0.34 0.31 ↓  
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Source  Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Notes:  Results are shown as the average across 100 bootstrap samples for each model specifications when optimizing all attributes. We specified the protected attribute as the 

second largest non-missing category for the demographic categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The demographic 
subgroups are shown in accordance with the demographic characteristics on which bias mitigation was performed. “All” is the AUROC and PRAUC for the model across 
characteristic subgroups. The Baseline columns represent model performance before any bias mitigation techniques are applied.  

↑ increase from baseline 
↓ decrease from baseline 
AUROC: area under the receiver operating characteristic curve; LR = Logistic Regression; MAAT = mitigating algorithmic bias with adversarial training; NHPI = Native Hawaiian or Pacific 
Islander; PRAUC = area under the precision-recall curve; RF = Random Forest. 
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Appendix 
Table A.1. Analytic sample 

Demographic characteristics 
Cognitive symptom cluster Fatigue symptom cluster Respiratory symptom cluster 

Positive N (%) Negative N (%) Positive N (%) Negative N (%) Positive N (%) Negative N (%) 
Total 2,937 (0.2%) 1,231,182 (99.8%) 57,483 (4.7%) 1,176,636 (95.3%) 30,668 (2.5%) 1,203,451 (97.5%) 
Age 60.1 (SD: 17.22) 41.4 (SD: 20.72) 44.1 (SD: 19.2) 41.3 (SD: 20.8) 47.0 (SD: 22) 41.3 (SD: 20.68) 
Age group       

0-17 40 (<0.1%) 171,327 (>99.9%) 4,597 (2.7%) 166,770 (97.3%) 3,683 (2.1%) 167,684 (97.9%) 
18-29 126 (<0.1%) 218,308 (>99.9%) 10,365 (4.7%) 208,069 (95.3%) 3,327 (1.5%) 215,107 (98.5%) 
30-39 179 (0.1%) 188,841 (99.9%) 9,583 (5.1%) 179,437 (94.9%) 3,409 (1.8%) 185,611 (98.2%) 
40-49 451 (0.2%) 194,235 (99.8%) 10,029 (5.2%) 184,657 (94.8%) 4,561 (2.3%) 190,125 (97.7%) 
50-59 474 (0.3%) 186,883 (99.7%) 9,173 (4.9%) 178,184 (95.1%) 5,407 (2.9%) 181,950 (97.1%) 
60-69 623 (0.4%) 150,740 (99.6%) 7,393 (4.9%) 143,970 (95.1%) 5,297 (3.5%) 146,066 (96.5%) 
70-79 681 (0.8%) 87,738 (99.2%) 4,597 (5.2%) 83,822 (94.8%) 3,665 (4.1%) 84,754 (95.9%) 
80+ 363 (1.1%) 33,110 (98.9%) 1,746 (5.2%) 31,727 (94.8%) 1,319 (3.9%) 32,154 (96.1%) 

Sex       
Female 1,751 (0.3%) 690,796 (99.7%) 39,362 (5.7%) 653,185 (94.3%) 18,164 (2.6%) 674,383 (97.4%) 
Male 1,186 (0.2%) 540,035 (99.8%) 18,111 ‡ (3.3%) 523,112 (96.7%) 12,501‡ (2.3%) 528,718 (97.7%) 
Other 0 (0%) 351 (100%) < 20 † 337 ‡ < 20 † 352 ‡ 

Race       
Asian 56 (0.2%) 25,719 (99.8%) 929 (3.6%) 24,846 (96.4%) 619 (2.4%) 25,156 (97.6%) 
Black or African American 412 (0.2%) 172,825 (99.8%) 8,068 (4.7%) 165,169 (95.3%) 5,186 (3%) 168,051 (97%) 
NHPI < 20 † 1,866 ‡ 61 (3.3%) 1,805 (96.7%) 38 (2%) 1,828 (98%) 
Other < 20 † 10,393 ‡ 470 (4.5%) 9,937 (95.5%) 286 (2.7%) 10,121 (97.3%) 
White 2,163 (0.3%) 845,108 (99.7%) 41,449 (4.9%) 805,822 (95.1%) 21,293 (2.5%) 825,978 (97.5%) 
Missing or unknown 289 (0.2%) 175,274 (99.8%) 6,506 (3.7%) 169,057 (96.3%) 3,246 (1.8%) 172,317 (98.2%) 

Ethnicity       
Hispanic or Latino 295 (0.2%) 167,080 (99.8%) 7,691 (4.6%) 159,684 (95.4%) 3,664 (2.2%) 163,711 (97.8%) 
Not Hispanic or Latino 2,408 (0.3%) 946,774 (99.7%) 45,876 (4.8%) 903,306 (95.2%) 24,966 (2.6%) 924,216 (97.4%) 
Missing or unknown 234 (0.2%) 117,328 (99.8%) 3,916 (3.3%) 113,646 (96.7%) 2,038 (1.7%) 115,524 (98.3%) 

Smoking status       
Current or former smoker 529 (0.4%) 146,835 (99.6%) 9,472 (6.4%) 137,892 (93.6%) 5,486 (3.7%) 141,878 (96.3%) 
Non-smoker 2,408 (0.2%) 1,084,347 (99.8%) 48,011 (4.4%) 1,038,744 (95.6%) 25,182 (2.3%) 1,061,573 (97.7%) 

Hypertension 29 (0.7%) 4,101 (99.3%) 329 (8.0%) 3,801 (92.0%) 172 (4.2%) 3,958 (95.8%) 
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Demographic characteristics 
Cognitive symptom cluster Fatigue symptom cluster Respiratory symptom cluster 

Positive N (%) Negative N (%) Positive N (%) Negative N (%) Positive N (%) Negative N (%) 
Obesity 590 (0.5%) 115,173 (99.5%) 9,581 (8.3%) 106,182 (91.7%) 5,281 (4.6%) 110,482 (95.4%) 
CCI Score 2.7 (SD: 3.11) 0.8 (SD: 1.73) 1.4 (SD: 2.35) 0.7 (SD: 1.7) 1.6 (SD: 2.51) 0.7 (SD: 1.71) 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Analytic sample of patients in N3C de-identified “tier 2 access” data set with lab confirmed positive cases of COVID-19 between September 1, 2020, and September 1, 2021, 

with condition occurrences within the six months preceding and proceeding diagnosis of COVID-19. The long symptom clusters cognitive, fatigue, and respiratory are defined 
by the Global Burden of Disease Long COVID Collaborators.  

 † To comply with N3C policy, counts below 20 are displayed as < 20, and in this case, additional values must be skewed by up to five to render it impossible to back-calculate precise 
counts fewer than 20 for the following categories: Age Group 0-9, Sex Other, Native Hawaiian or Pacific Islander, Race Other, and Pregnant. 

 ‡ This proportion is one of the two columns that sum up to one. Reporting it would enable the calculation of a cell size < 20. Therefore, we mark it as too small to quantitatively 
report. 

CCI =Charlson Comorbidity Index; NHPI = Native Hawaiian or Pacific Islander; N3C = National COVID Cohort Collaborative; SD = standard deviation. 
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Table A.2. Fairness metrics at baseline and after bias mitigation (using reweighting, MAAT, and FairMask), optimizing for a single 
protected variable (sex, race, or ethnicity) for the three symptom clusters. 

Symptom 
cluster Model type 

Protected 
attribute 

Disparate impact ratio (DIR) Equal opportunity ratio (EOR) Predictive equality ratio (PER) 

Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Cognitive  Logistic 
Regression 

Sex 0.79 0.90 ↑ 0.78 ↓ 0.94 ↑ 0.97 0.97 0.97 0.92 ↓ 0.79 0.90 ↑ 0.78 ↓ 0.94 ↑ 

Race 0.90 0.92 ↑ 0.90 0.95 ↑ 0.90 0.89 ↓ 0.90 0.92 ↑ 0.90 0.92 ↑ 0.90 0.95 ↑ 

Ethnicity 0.57 0.88 ↑ 0.57 0.61 ↑ 0.86 0.97 ↑ 0.87 ↑ 0.88 ↑ 0.57 0.88 ↑ 0.57 0.61 ↑ 

Random 
Forest 

Sex 0.98 0.99 ↑ 0.98 0.99 ↑ 0.98 0.97 ↓ 0.98 0.97 ↓ 0.98 0.99 ↑ 0.98 0.99 ↑ 

Race 0.90 0.91 ↑ 0.90 0.91 ↑ 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90 

Ethnicity 0.70 0.74 ↑ 0.70 0.70 0.91 0.95 ↑ 0.91 0.90 ↓ 0.70 0.74 ↑ 0.70 0.69 ↓ 

Fatigue  Logistic 
Regression 

Sex 0.17 0.91 ↑ 0.17 0.89 ↑ 0.31 0.98 ↑ 0.31 0.96 ↑ 0.16 0.92 ↑ 0.16 0.89 ↑ 

Race 0.86 0.84 ↓ 0.85 ↓ 0.79 ↓ 0.92 0.93 ↑ 0.91 ↓ 0.80 ↓ 0.85 0.84 ↓ 0.85 0.79 ↓ 

Ethnicity 0.90 0.91 ↑ 0.90 0.93 ↑ 0.93 0.94 ↑ 0.93 0.95 ↑ 0.89 0.91 ↑ 0.89 0.93 ↑ 

Random 
Forest 

Sex 0.56 0.93 ↑ 0.56 0.92 ↑ 0.71 0.97 ↑ 0.71 0.98 ↑ 0.56 0.93 ↑ 0.56 0.92 ↑ 

Race 0.87 0.88 ↑ 0.87 0.76 ↓ 0.85 0.86 ↑ 0.85 0.79 ↓ 0.87 0.88 ↑ 0.87 0.76 ↓ 

Ethnicity 0.88 0.89 ↑ 0.88 0.84 ↓ 0.91 0.91 0.91 0.88 ↓ 0.88 0.89 ↑ 0.88 0.84 ↓ 

Respiratory Logistic 
Regression 

Sex 0.68 0.92 ↑ 0.68 0.97 ↑ 0.82 0.97 ↑ 0.82 0.95 ↑ 0.68 0.92 ↑ 0.68 0.97 ↑ 

Race 0.64 0.94 ↑ 0.64 0.83 ↑ 0.76 0.96 ↑ 0.76 0.89 ↑ 0.64 0.94 ↑ 0.64 0.83 ↑ 

Ethnicity 0.66 0.94 ↑ 0.66 0.74 ↑ 0.72 0.95 ↑ 0.72 0.77 ↑ 0.66 0.94 ↑ 0.66 0.74 ↑ 

Random 
Forest 

Sex 0.96 0.98 ↑ 0.96 0.98 ↑ 0.95 0.97 ↑ 0.95 0.97 ↑ 0.96 0.98 ↑ 0.96 0.98 ↑ 

Race 0.76 0.82 ↑ 0.76 0.79 ↑ 0.85 0.88 ↑ 0.85 0.87 ↑ 0.76 0.82 ↑ 0.76 0.79 ↑ 

Ethnicity 0.80 0.87 ↑ 0.80 0.84 ↑ 0.79 0.84 ↑ 0.79 0.82 ↑ 0.81 0.87 ↑ 0.81 0.85 ↑ 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specifications. We specified the protected attribute as the second largest non-missing category 

for the demographic categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The Baseline columns represent model fairness before any bias 
mitigation techniques are applied.  

 ↑ increase from baseline 
 ↓ decrease from baseline 
MAAT = mitigating algorithmic bias with adversarial training.
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Table A.3. Performance metrics by demographic subgroup at baseline and after bias mitigation (using reweighting, MAAT, and 
FairMask), optimizing for a single protected variable (sex, race, or ethnicity) for the three symptom clusters 

Symptom   
Model 
type 

Protected 
attribute Demographic subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Cognitive LR Sex All 0.73 0.73 0.72 ↓ 0.73 0.36 0.36 0.36 0.36 
Female 0.71 0.72 ↑ 0.71 0.72 ↑ 0.36 0.36 0.36 0.35 ↓ 
Male 0.74 0.74 0.74 0.74 0.36 0.36 0.36 0.38 ↑ 
Other  -- -- -- -- -- -- -- -- 

Race All 0.73 0.73 0.72 ↓ 0.73 0.36 0.36 0.36 0.36 
White 0.73 0.73 0.73 0.73 0.37 0.37 0.38 ↑ 0.37 
Black or African American 0.70 0.70 0.70 0.70 0.33 0.33 0.33 0.33 
Asian 0.72 0.72 0.72 0.73 ↑ 0.36 0.35 ↓ 0.35 ↓ 0.36 
NHPI -- -- -- -- -- -- -- -- 
Other 0.83 0.83 0.83 0.82 ↓ 0.42 0.42 0.42 0.41 ↓ 
Missing or unknown 0.71 0.71 0.71 0.71 0.29 0.29 0.29 0.29 

Ethnicity All 0.73 0.72 ↓ 0.72 ↓ 0.73 0.36 0.36 0.36 0.36 
Not Hispanic or Latino 0.72 0.72 0.72 0.72 0.37 0.36 ↓ 0.37 0.37 
Hispanic or Latino 0.73 0.74 ↑ 0.74 ↑ 0.73 0.32 0.36 ↑ 0.32 0.32 
Missing or unknown 0.73 0.73 0.73 0.73 0.32 0.31 ↓ 0.32 0.32 

RF Sex All 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
Female 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
Male 0.73 0.73 0.73 0.73 0.38 0.38 0.38 0.38 
Other -- -- -- -- -- -- -- -- 

Race All 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
White 0.72 0.72 0.72 0.72 0.38 0.38 0.38 0.38 
Black or African American 0.68 0.68 0.68 0.68 0.34 0.34 0.34 0.34 
Asian 0.74 0.74 0.74 0.74 0.38 0.38 0.38 0.38 
NHPI -- -- -- -- -- -- -- -- 
Other 0.83 0.83 0.83 0.83 0.42 0.42 0.42 0.42 
Missing or unknown 0.74 0.74 0.74 0.73 ↓ 0.34 0.34 0.34 0.34 

Ethnicity All 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
Not Hispanic or Latino 0.72 0.72 0.72 0.72 0.38 0.38 0.38 0.38 
Hispanic or Latino 0.73 0.74 ↑ 0.73 0.73 0.34 0.35 ↑ 0.34 0.34 
Missing or unknown 0.76 0.76 0.76 0.76 0.36 0.36 0.36 0.36 
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Symptom 
Model 
type 

Protected 
attribute Demographic subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Fatigue LR Sex All 0.60 0.59 ↓ 0.60 0.59 ↓ 0.35 0.28 ↓ 0.35 0.31 ↓ 
Female 0.57 0.58 ↑ 0.57 0.58 ↑ 0.43 0.29 ↓ 0.43 0.32 ↓ 
Male 0.57 0.60 ↑ 0.57 0.59 ↑ 0.17 0.27 ↑ 0.17 0.29 ↑ 
Other 0.56 0.64 ↑ 0.56 0.60 ↑ 0.26 0.25 ↓ 0.27 ↑ 0.25 ↓ 

Race All 0.60 0.60 0.60 0.60 0.35 0.35 0.35 0.36 ↑ 
White 0.59 0.59 0.59 0.59 0.37 0.37 0.37 0.37 
Black or African American 0.62 0.62 0.62 0.62 0.35 0.34 ↓ 0.35 0.42 ↑ 
Asian 0.57 0.58 ↑ 0.58 ↑ 0.58 ↑ 0.21 0.21 0.21 0.21 
NHPI 0.56 0.56 0.57 ↑ 0.57 ↑ 0.19 0.19 0.20 ↑ 0.20 ↑ 
Other 0.62 0.62 0.63 ↑ 0.62 0.34 0.33 ↓ 0.34 0.33 ↓ 
Missing or unknown 0.60 0.60 0.60 0.60 0.23 0.23 0.23 0.25 ↑ 

Ethnicity All 0.60 0.60 0.60 0.60 0.35 0.35 0.35 0.36 ↑ 
Not Hispanic or Latino 0.60 0.60 0.60 0.60 0.37 0.37 0.37 0.37 
Hispanic or Latino 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.35 ↑ 
Missing or unknown 0.59 0.59 0.59 0.61 ↑ 0.20 0.20 0.20 0.24 ↑ 

RF Sex All 0.60 0.60 0.60 0.60 0.33 0.30 ↓ 0.33 0.30 ↓ 
Female 0.59 0.59 0.59 0.59 0.36 0.31 ↓ 0.36 0.31 ↓ 
Male 0.60 0.61 ↑ 0.60 0.61 ↑ 0.26 0.30 ↑ 0.26 0.29 ↑ 
Other 0.89 0.81 ↓ 0.89 0.83 ↓ 0.54 0.42 ↓ 0.54 0.45 ↓ 

Race All 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.34 ↑ 
White 0.59 0.59 0.59 0.60 ↑ 0.33 0.33 0.33 0.34 ↑ 
Black or African American 0.62 0.62 0.62 0.62 0.37 0.37 0.37 0.39 ↑ 
Asian 0.57 0.58 ↑ 0.57 0.56 ↓ 0.25 0.25 0.25 0.22 ↓ 
NHPI 0.55 0.55 0.55 0.55 0.22 0.22 0.22 0.21 ↓ 
Other 0.60 0.60 0.60 0.58 ↓ 0.29 0.29 0.29 0.24 ↓ 
Missing or unknown 0.62 0.62 0.62 0.61 ↓ 0.27 0.27 0.27 0.26 ↓ 

Ethnicity All 0.60 0.60 0.60 0.60 0.33 0.33 0.33 0.33 
Not Hispanic or Latino 0.60 0.60 0.60 0.60 0.34 0.34 0.34 0.34 
Hispanic or Latino 0.60 0.60 0.60 0.60 0.31 0.31 0.31 0.30 ↓ 
Missing or unknown 0.62 0.62 0.62 0.62 0.25 0.25 0.25 0.25 
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Symptom   
Model 
type 

Protected 
attribute Demographic subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Respiratory LR Sex All 0.61 0.61 0.61 0.61 0.29 0.28 ↓ 0.29 0.28 ↓ 
Female 0.61 0.61 0.60 ↓ 0.61 0.31 0.29 ↓ 0.31 0.28 ↓ 
Male 0.61 0.61 0.61 0.61 0.26 0.28 ↑ 0.26 0.29 ↑ 
Other -- -- -- -- -- -- -- -- 

Race All 0.61 0.61 0.61 0.61 0.29 0.28 ↓ 0.29 0.29 
White 0.60 0.60 0.60 0.61 ↑ 0.29 0.30 ↑ 0.29 0.29 
Black or African American 0.60 0.61 ↑ 0.60 0.61 ↑ 0.35 0.28 ↓ 0.36 ↑ 0.31 ↓ 
Asian 0.60 0.60 0.60 0.60 0.26 0.27 ↑ 0.26 0.26 
NHPI 0.62 0.62 0.63 ↑ 0.62 0.23 0.24 ↑ 0.25 ↑ 0.24 ↑ 
Other 0.58 0.58 0.58 0.59 ↑ 0.31 0.32 ↑ 0.31 0.30 ↓ 
Missing or unknown 0.60 0.61 ↑ 0.60 0.60 0.20 0.21 ↑ 0.20 0.20 

Ethnicity All 0.61 0.61 0.61 0.61 0.29 0.29 0.29 0.29 
Not Hispanic or Latino 0.61 0.61 0.61 0.61 0.31 0.30 ↓ 0.31 0.31 
Hispanic or Latino 0.59 0.60 ↑ 0.59 0.59 0.22 0.27 ↑ 0.22 0.23 ↑ 
Missing or unknown 0.60 0.59 ↓ 0.60 0.60 0.18 0.17 ↓ 0.18 0.18 

RF Sex All 0.62 0.62 0.62 0.62 0.30 0.30 0.30 0.30 
Female 0.62 0.62 0.62 0.62 0.31 0.31 0.31 0.31 
Male 0.61 0.61 0.61 0.61 0.29 0.29 0.29 0.30 ↑ 
Other -- -- -- -- -- -- -- -- 

Race All 0.62 0.62 0.62 0.62 0.30 0.30 0.30 0.30 
White 0.62 0.61 ↓ 0.62 0.62 0.30 0.30 0.30 0.30 
Black or African American 0.62 0.62 0.62 0.62 0.34 0.33 ↓ 0.34 0.34 
Asian 0.61 0.61 0.61 0.61 0.28 0.28 0.28 0.28 
NHPI 0.61 0.61 0.61 0.61 0.25 0.25 0.25 0.25 
Other 0.57 0.57 0.57 0.57 0.26 0.26 0.26 0.25 ↓ 
Missing or unknown 0.62 0.62 0.62 0.62 0.26 0.26 0.26 0.25 ↓ 

Ethnicity All 0.62 0.62 0.62 0.62 0.30 0.30 0.30 0.30 
Not Hispanic or Latino 0.62 0.62 0.62 0.62 0.31 0.31 0.31 0.31 
Hispanic or Latino 0.59 0.60 ↑ 0.59 0.59 0.25 0.26 ↑ 0.25 0.25 
Missing or unknown 0.62 0.62 0.62 0.62 0.25 0.25 0.25 0.25 

Source: Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Note: Results are shown as the average across 100 bootstrap samples for each model specifications. We specified the protected attribute as the second largest non-missing category 

for the demographic categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The demographic subgroups are shown in accordance with the 
demographic characteristics on which bias mitigation was performed. The “All” rows are the AUROC and PRAUC for the model across demographic subgroups. The Baseline 
columns represent model performance before any bias mitigation techniques are applied.  
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 ↑ increase from baseline 
 ↓ decrease from baseline 
-- unable to calculate the AUROC or PRAUC for some demographic characteristic subgroups due to small sample size. 
AUROC = area under the receiver operating characteristic curve; LR = logistic regression; MAAT = mitigating algorithmic bias with adversarial training; NHPI = Native Hawaiian or 
Pacific Islander; PRAUC = area under the precision-recall curve; RF = Random Forest. 
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Table A.4. Mean model fairness for test data before and after bias mitigation when optimizing multiple attributes 
Symptom 
cluster 

Model 
type 

Protected 
attribute 

Disparate impact ratio Equal opportunity ratio Predictive equality ratio 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Cognitive  LR Sex 0.79 0.83 ↑ 0.78 ↓ 0.95 ↑ 0.97 0.98 ↑ 0.97 0.93 ↓ 0.79 0.83 ↑ 0.78 ↓ 0.95 ↑ 
Race 0.90 0.90 0.90 0.96 ↑ 0.90 0.91 ↑ 0.90 0.91 ↑ 0.90 0.90 0.90 0.96 ↑ 
Ethnicity 0.57 0.60 ↑ 0.57 0.63 ↑ 0.86 0.88 ↑ 0.87 ↑ 0.92 ↑ 0.57 0.60 ↑ 0.57 0.63 ↑ 
Intersectional 
metric 

0.21 0.20 ↓ 0.22 ↑ 0.14 ↓ 0.35 0.32 ↓ 0.34 ↓ 0.30 ↓ 0.21 0.20 ↓ 0.21 0.13 

RF Sex 0.98 0.98 0.98 0.99 ↑ 0.98 0.98 0.98 0.97 ↓ 0.98 0.98 0.98 0.99 ↑ 
Race 0.90 0.90 0.90 0.91 ↑ 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.91 ↑ 
Ethnicity 0.70 0.71 ↑ 0.70 0.71 ↑ 0.91 0.93 ↑ 0.91 0.92 ↑ 0.70 0.71 ↑ 0.70 0.71 ↑ 
Intersectional 
metric 

0.16 0.16 0.16 0.14 ↓ 0.34 0.34 0.34 0.34 0.16 0.16 0.16 0.14 

Fatigue  LR Sex 0.17 0.25 ↑ 0.17 0.90 ↑ 0.31 0.41 ↑ 0.31 0.99 ↑ 0.16 0.24 ↑ 0.16 0.90 ↑ 
Race 0.86 0.88 ↑ 0.86 0.72 ↓ 0.92 0.87 ↓ 0.91 ↓ 0.74 ↓ 0.85 0.88 ↑ 0.85 0.72 ↓ 
Ethnicity 0.90 0.90 0.90 0.92 ↑ 0.93 0.93 0.93 0.92 ↓ 0.89 0.90 ↑ 0.89 0.92 ↑ 
Intersectional 
metric 

0.63 0.65 ↑ 0.63 0.18 ↓ 0.74 0.70 ↓ 0.74 0.26 ↓ 0.63 0.65 ↑ 0.63 0.17 

RF 
 

Sex 0.56 0.50 ↓ 0.56 0.92 ↑ 0.71 0.68 ↓ 0.71 0.98 ↑ 0.56 0.50 ↓ 0.56 0.92 ↑ 
Race 0.87 0.82 ↓ 0.87 0.80 ↓ 0.85 0.84 ↓ 0.85 0.78 ↓ 0.87 0.81 ↓ 0.87 0.80 ↓ 
Ethnicity 0.88 0.85 ↓ 0.88 0.85 ↓ 0.91 0.89 ↓ 0.91 0.89 ↓ 0.88 0.85 ↓ 0.88 0.85 ↓ 
Intersectional 
metric 

0.35 0.55 ↑ 0.35 0.18 ↓ 0.40 0.54 ↑ 0.40 0.27 ↓ 0.34 0.55 ↑ 0.34 0.17 

Respiratory LR 
 

Sex 0.68 0.70 ↑ 0.68 0.96 ↑ 0.82 0.83 ↑ 0.82 0.95 ↑ 0.68 0.69 ↑ 0.68 0.96 ↑ 
Race 0.64 0.62 ↓ 0.64 0.84 ↑ 0.76 0.75 ↓ 0.76 0.90 ↑ 0.64 0.62 ↓ 0.64 0.84 ↑ 
Ethnicity 0.66 0.67 ↑ 0.66 0.75 ↑ 0.72 0.73 ↑ 0.72 0.78 ↑ 0.66 0.67 ↑ 0.66 0.75 ↑ 
Intersectional 
metric 

0.37 0.38 ↑ 0.37 0.12 ↓ 0.66 0.66 0.67 ↑ 0.49 ↓ 0.36 0.38 ↑ 0.37 ↑ 0.12 

RF Sex 0.96 0.97 ↑ 0.96 0.98 ↑ 0.95 0.96 ↑ 0.95 0.97 ↑ 0.96 0.97 ↑ 0.96 0.98 ↑ 
Race 0.76 0.76 0.76 0.80 ↑ 0.85 0.85 0.85 0.87 ↑ 0.76 0.76 0.76 0.80 ↑ 
Ethnicity 0.80 0.81 ↑ 0.80 0.85 ↑ 0.79 0.80 ↑ 0.79 0.83 ↑ 0.81 0.81 0.81 0.85 ↑ 
Intersectional 
metric 

0.18 0.18 0.18 0.14 ↓ 0.58 0.58 0.58 0.57 ↓ 0.17 0.17 0.17 0.14 

Source Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
Notes:  Results are shown as the average across 100 bootstrap samples for each model specifications after optimizing the combination of all protected attributes. We specified the 

protected attribute as the second largest non-missing category for the demographic categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). 
The Baseline columns represent model fairness before any bias mitigation techniques are applied.  
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 ↑ increase from baseline 
 ↓ decrease from baseline 
AUROC = area under the receiver operating characteristic curve; LR = Logistic Regression; MAAT = mitigating algorithmic bias with adversarial training; NHPI = Native Hawaiian or 
Pacific Islander; PRAUC = area under the precision-recall curve; RF = Random Forest
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Table A.5. Subgroup performance for test data before and after bias mitigation when optimizing multiple attributes 

Symptom 
Cluster 

Model 
Type Demographic Subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Cognitive LR All 0.73 0.72 ↓ 0.72 ↓ 0.73 0.36 0.36 0.36 0.36 
Sex: Female 0.71 0.71 0.71 0.72 ↑ 0.36 0.36 0.36 0.35 ↓ 
Sex: Male 0.74 0.74 0.74 0.74 0.36 0.37 ↑ 0.36 0.38 ↑ 
Sex: Other -- -- -- -- -- -- -- -- 
Race: Asian 0.72 0.72 0.72 0.72 0.36 0.36 0.35 ↓ 0.36 
Race: Black or African American 0.70 0.70 0.70 0.69 ↓ 0.33 0.34 ↑ 0.33 0.33 
Race: Missing or unknown 0.71 0.71 0.71 0.71 0.29 0.29 0.29 0.29 
Race: NHPI -- -- -- -- -- -- -- -- 
Race: Other 0.83 0.83 0.83 0.81 ↓ 0.42 0.42 0.42 0.40 ↓ 
Race: White 0.73 0.73 0.73 0.73 0.37 0.38 ↑ 0.38 ↑ 0.37 
Ethnicity: Hispanic or Latino 0.73 0.74 ↑ 0.74 ↑ 0.74 ↑ 0.32 0.33 ↑ 0.32 0.33 ↑ 
Ethnicity: Missing or unknown 0.73 0.73 0.73 0.73 0.32 0.33 ↑ 0.32 0.33 ↑ 
Ethnicity: Not Hispanic or Latino 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.36 ↓ 

RF All 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
Sex: Female 0.72 0.72 0.72 0.72 0.37 0.37 0.37 0.37 
Sex: Male 0.73 0.73 0.73 0.73 0.38 0.38 0.38 0.38 
Sex: Other -- -- -- -- -- -- -- -- 
Race: Asian 0.74 0.74 0.74 0.74 0.38 0.38 0.38 0.38 
Race: Black or African American 0.68 0.68 0.68 0.68 0.34 0.35 ↑ 0.34 0.34 
Race: Missing or unknown 0.74 0.74 0.74 0.73 ↓ 0.34 0.35 ↑ 0.34 0.33 ↓ 
Race: NHPI -- -- -- -- -- -- -- -- 
Race: Other 0.83 0.83 0.83 0.83 0.42 0.42 0.42 0.42 
Race: White 0.72 0.72 0.72 0.72 0.38 0.38 0.38 0.38 
Ethnicity: Hispanic or Latino 0.73 0.74 ↑ 0.73 0.73 0.34 0.35 ↑ 0.34 0.34 
Ethnicity: Missing or unknown 0.76 0.76 0.76 0.76 0.36 0.36 0.36 0.36 
Ethnicity: Not Hispanic or Latino 0.72 0.72 0.72 0.72 0.38 0.38 0.38 0.38 
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Symptom 
Cluster 

Model 
Type Demographic Subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Fatigue LR All 0.60 0.60 0.60 0.59 ↓ 0.35 0.38 ↑ 0.35 0.29 ↓ 
Sex: Female 0.57 0.56 ↓ 0.57 0.58 ↑ 0.43 0.45 ↑ 0.43 0.30 ↓ 
Sex: Male 0.57 0.58 ↑ 0.57 0.60 ↑ 0.17 0.21 ↑ 0.17 0.27 ↑ 
Sex: Other 0.56 0.55 ↓ 0.56 0.61 ↑ 0.26 0.27 ↑ 0.27 ↑ 0.25 ↓ 
Race: Asian 0.57 0.58 ↑ 0.58 ↑ 0.55 ↓ 0.21 0.22 ↑ 0.21 0.16 ↓ 
Race: Black or African American 0.62 0.62 0.62 0.61 ↓ 0.35 0.42 ↑ 0.35 0.35 
Race: Missing or unknown 0.60 0.61 ↑ 0.60 0.59 ↓ 0.23 0.29 ↑ 0.23 0.22 ↓ 
Race: NHPI 0.56 0.56 0.57 ↑ 0.55 ↓ 0.19 0.20 ↑ 0.20 ↑ 0.17 ↓ 
Race: Other 0.62 0.63 ↑ 0.63 ↑ 0.58 ↓ 0.34 0.36 ↑ 0.34 0.30 ↓ 
Race: White 0.59 0.59 0.59 0.58 ↓ 0.37 0.39 ↑ 0.37 0.29 ↓ 
Ethnicity: Hispanic or Latino 0.60 0.60 0.60 0.58 ↓ 0.33 0.40 ↑ 0.33 0.27 ↓ 
Ethnicity: Missing or unknown 0.59 0.60 ↑ 0.59 0.58 ↓ 0.20 0.21 ↑ 0.20 0.19 ↓ 
Ethnicity: Not Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.37 0.39 ↑ 0.37 0.30 ↓ 

RF All 0.60 0.60 0.60 0.60 0.33 0.37 ↑ 0.33 0.30 ↓ 
Sex: Female 0.59 0.57 ↓ 0.59 0.59 0.36 0.41 ↑ 0.36 0.31 ↓ 
Sex: Male 0.60 0.61 ↑ 0.60 0.61 ↑ 0.26 0.29 ↑ 0.26 0.30 ↑ 
Sex: Other 0.89 0.85 ↓ 0.89 0.75 ↓ 0.54 0.53 ↓ 0.54 0.36 ↓ 
Race: Asian 0.57 0.59 ↑ 0.57 0.57 0.25 0.29 ↑ 0.25 0.24 ↓ 
Race: Black or African American 0.62 0.61 ↓ 0.62 0.62 0.37 0.42 ↑ 0.37 0.36 ↓ 
Race: Missing or unknown 0.62 0.63 ↑ 0.62 0.61 ↓ 0.27 0.33 ↑ 0.27 0.26 ↓ 
Race: NHPI 0.55 0.56 ↑ 0.55 0.54 ↓ 0.22 0.27 ↑ 0.22 0.21 ↓ 
Race: Other 0.60 0.64 ↑ 0.60 0.59 ↓ 0.29 0.36 ↑ 0.29 0.25 ↓ 
Race: White 0.59 0.59 0.59 0.59 0.33 0.37 ↑ 0.33 0.30 ↓ 
Ethnicity: Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.31 0.40 ↑ 0.31 0.28 ↓ 
Ethnicity: Missing or unknown 0.62 0.63 ↑ 0.62 0.62 0.25 0.28 ↑ 0.25 0.26 ↑ 
Ethnicity: Not Hispanic or Latino 0.60 0.60 0.60 0.59 ↓ 0.34 0.37 ↑ 0.34 0.31 ↓ 
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Symptom 
Cluster 

Model 
Type Demographic Subgroup 

AUROC PRAUC 
Baseline Reweighting MAAT FairMask Baseline Reweighting MAAT FairMask 

Respiratory LR All 0.61 0.61 0.61 0.61 0.29 0.29 0.29 0.28 ↓ 
Sex: Female 0.61 0.60 ↓ 0.60 ↓ 0.61 0.31 0.31 0.31 0.28 ↓ 
Sex: Male 0.61 0.61 0.61 0.61 0.26 0.26 0.26 0.29 ↑ 
Sex: Other -- -- -- -- -- -- -- -- 
Race: Asian 0.60 0.60 0.60 0.60 0.26 0.26 0.26 0.26 
Race: Black or African American 0.60 0.60 0.60 0.61 ↑ 0.35 0.36 ↑ 0.36 ↑ 0.31 ↓ 
Race: Missing or Unknown 0.60 0.60 0.60 0.60 0.20 0.21 ↑ 0.20 0.20 
Race: NHPI 0.62 0.62 0.63 ↑ 0.62 0.23 0.24 ↑ 0.25 ↑ 0.24 ↑ 
Race: Other 0.58 0.58 0.58 0.58 0.31 0.31 0.31 0.30 ↓ 
Race: White 0.60 0.61 ↑ 0.60 0.61 ↑ 0.29 0.29 0.29 0.29 
Ethnicity: Hispanic or Latino 0.59 0.59 0.59 0.59 0.22 0.23 ↑ 0.22 0.23 ↑ 
Ethnicity: Missing or unknown 0.60 0.60 0.60 0.59 ↓ 0.18 0.18 0.18 0.18 
Ethnicity: Not Hispanic or Latino 0.61 0.61 0.61 0.61 0.31 0.31 0.31 0.30 ↓ 

RF All 0.62 0.62 0.62 0.62 0.30 0.30 0.30 0.31 ↑ 
Sex: Female 0.62 0.62 0.62 0.62 0.31 0.31 0.31 0.31 
Sex: Male 0.61 0.61 0.61 0.62 ↑ 0.29 0.29 0.29 0.30 ↑ 
Sex: Other -- -- -- -- -- -- -- -- 
Race: Asian 0.61 0.61 0.61 0.61 0.28 0.28 0.28 0.28 
Race: Black or African American 0.62 0.62 0.62 0.62 0.34 0.35 ↑ 0.34 0.34 
Race: Missing or unknown 0.62 0.62 0.62 0.62 0.26 0.26 0.26 0.26 
Race: NHPI 0.61 0.61 0.61 0.62 ↑ 0.25 0.25 0.25 0.27 ↑ 
Race: Other 0.57 0.57 0.57 0.58 ↑ 0.26 0.26 0.26 0.28 ↑ 
Race: White 0.62 0.62 0.62 0.62 0.30 0.30 0.30 0.31 ↑ 
Ethnicity: Hispanic or Latino 0.59 0.59 0.59 0.60 ↑ 0.25 0.25 0.25 0.26 ↑ 
Ethnicity: Missing or unknown 0.62 0.62 0.62 0.62 0.25 0.25 0.25 0.25 
Ethnicity: Not Hispanic or Latino 0.62 0.62 0.62 0.62 0.31 0.32 ↑ 0.31 0.32 ↑ 

Source Analysis completed in the National COVID Cohort Collaborative Data Enclave. 
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Note: Results are shown as the average across 100 bootstrap samples for each model specifications after optimizing the 
combination of all protected attributes. Bias mitigation was performed via reweighting, MAAT, and FairMask based on the 
protected attribute. We specified the protected attribute as the second largest non-missing category for the demographic 
categories sex (male), race (Black or African American), and ethnicity (Hispanic or Latino). The demographic subgroups are 
shown in accordance with the demographic characteristics on which bias mitigation was performed. “All” is the AUROC and 
PRAUC for the model across characteristic subgroups. The Baseline columns represent model performance before any bias 
mitigation techniques are applied.  

 ↑ increase from baseline 
 ↓ decrease from baseline 
-- We were unable to calculate the AUROC or PRAUC for some demographic characteristic subgroups due to small sample size. 
PRAUC: area under the precision-recall curve; AUROC: Area under the receiver operating characteristic curve; NHPI: Native Hawaiian 
or Pacific Islander 
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