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A. INTRODUCTION 

Studies that examine the impacts of education interventions on key student, teacher, and 
school outcomes typically collect data on large samples and on many outcomes. In analyzing 
these data, researchers typically conduct multiple hypothesis tests to address key impact 
evaluation questions. Tests are conducted to assess intervention effects for multiple outcomes, 
for multiple subgroups of schools or individuals, and sometimes across multiple treatment 
alternatives.   

 
In such instances, separate t-tests for each contrast are often performed to test the null 

hypothesis of no impacts, where the type I error rate (statistical significance level) is typically set 
at α = 5 percent for each test. This means that, for each test, the chance of erroneously finding a 
statistically significant impact is 5 percent. However, when the hypothesis tests are considered 
together, the �combined� type I error rate could be considerably larger than 5 percent.  For 
example, if all null hypotheses are true, the chance of finding at least one spurious impact is 23 
percent if 5 independent tests are conducted, 64 percent for 20 tests, and 92 percent for 50 tests 
(as discussed in more detail later in this report). Thus, without accounting for the multiple 
comparisons being conducted, users of the study findings may draw unwarranted conclusions. 

 
At the same time, statistical procedures that correct for multiple testing typically result in 

hypothesis tests with reduced statistical power�the probability of rejecting the null hypothesis 
given that it is false. Stated differently, these adjustment methods reduce the likelihood of 
identifying real differences between the contrasted groups. This is because controlling for 
multiple testing involves lowering the type I error rate for individual tests, with a resulting 
increase in the type II error rate. Simulation results presented later in this report show that if 
statistical power for an uncorrected individual test is 80 percent, the commonly-used Bonferroni 
adjustment procedure reduces statistical power to 59 percent if 5 tests are conducted, 41 percent 
for 20 tests, and 31 percent for 50 tests. Thus, multiplicity adjustment procedures can lead to 
substantial losses in statistical power.  

 
There is disagreement about the use of multiple testing procedures and the appropriate 

tradeoff between type I error and statistical power (type II error). Saville (1990) argues against 
multiplicity control to avoid statistical power losses, and that common sense and information 
from other sources should be used to protect against errors of interpretation. Cook and Farewell 
(1996) argue that multiplicity adjustments may not be necessary if there is a priori interest in 
estimating separate (marginal) treatment effects for a limited number of key contrasts that pertain 
to different aspects of the intervention. Some authors also contend that the use of multiplicity 
corrections may be somewhat ad hoc because the choice of the size and composition of the 
family tested could be �manipulated� to find statistical significance (or insignificance). Many 
other authors argue, however, that ignoring multiplicity can lead to serious misinterpretation of 
study findings and publishing bias (see, for example, Westfall et al. 1999). These authors argue 
also that the choice of the tested families should be made prior to the data analysis to avoid the 
manipulation of findings.  
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Multiple comparisons issues are often not addressed in impact evaluations of educational 
interventions or in other fields. For example, in a survey of physiology journals, Curran-Everett 
(2000) found that only 40 percent of articles reporting results from clinical trials addressed the 
multiple comparisons problem. Hsu (1996) reports also that multiple comparisons adjustment 
procedures are often used incorrectly.   

 
Accordingly, the Institute of Education Sciences (IES) at the U.S. Department of Education 

(ED) contracted with Mathematica Policy Research, Inc. (MPR) to develop guidelines for 
appropriately handling multiple testing in education research. These guidelines�which are 
presented in this report�were developed with substantial input from an advisory panel 
(Appendix A lists the panel members). The views expressed in this report, however, are those of 
the author.   

The remainder of this report presents the guidelines for multiple testing, followed by several 
technical appendixes. Appendix B provides more details on the nature of the multiple testing 
problem and the statistical solutions that have been proposed in the literature. Appendix C 
discusses the creation of composite outcome measures, which is a central feature of the 
recommended procedures. Finally, Appendix D presents the Bayesian hypothesis testing 
approach, which is the main alternative to the classical hypothesis testing framework that is 
assumed for this report.  

 
 

B. GUIDELINES FOR MULTIPLE TESTING 

This section first discusses basic principles for addressing multiplicity, followed by a 
presentation of testing strategy guidelines. The focus is on designs with a single treatment and 
control group where data on multiple outcomes are collected for each sample member. These are 
the most common designs that are used in IES-funded education research. Guidelines are also 
provided for subgroup analyses and for designs with multiple treatment groups. The guidelines 
are consistent with those proposed for medical trials (see, for example, Lang and Secic 2007, 
CPMP 2002, and Altman et al. 2001), but are designed for evaluations of education 
interventions. 
 

This report provides a structure to address the multiplicity problem and discusses issues to 
consider when formulating a testing strategy. The report does not provide step-by-step 
instructions on how to apply the guidelines, which is not possible due to the myriad types of 
impact evaluations that are conducted in the education field. Specific details on the use of the 
guidelines will vary by study depending on the interventions being tested, target populations, key 
research questions, and study objectives. 
 
 Finally, the guidelines assume that a classical (frequentist) hypothesis testing approach is 
used to analyze the data, because this is the testing strategy that is typically used in impact 
evaluations in the education field. Appendix B discusses the basic features of this testing 
approach. (Appendix D discusses the alternative Bayesian approach.)     
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I. BASIC PRINCIPLES  

1. The multiple comparisons problem should not be ignored.  
 
The multiple comparisons problem can lead to erroneous study conclusions if the α level for 

individual tests is not adjusted downward. At the same time, strategies for dealing with 
multiplicity must strike a reasonable balance between testing rigor and statistical power�the 
chance of finding truly effective interventions.  

 
 

2. Limiting the number of outcomes and subgroups forces a sharp focus and is one of the 
best ways to address the multiple comparisons problem.  

 
Multiple testing is less of a problem if studies limit the number of contrasts for analysis.  

Sharply focusing research questions on one or a few outcomes and on a small number of target 
groups diminishes the chance of finding impacts where none exist.  

 
At the same time, in some studies, theory and prior research may not support a sharp focus 

on outcomes or subgroups and, in others, the tested interventions may be expected to have a 
range of effects. Furthermore, in a context where IES and other funders are executing costly 
studies to identify promising approaches to difficult problems, narrowing the range of outcomes 
and subgroups limits researchers� ability to use post hoc exploratory analyses to find unexpected, 
yet policy-relevant information.  

 
Thus, the multiple comparisons testing strategy should be flexible to allow for (1) 

confirmatory analyses to assess how strongly the study�s pre-specified central hypotheses are 
supported by the data, and (2) exploratory analyses to identify hypotheses that could be subject 
to future rigorous testing.  

 
 

3. The multiple comparisons problem should be addressed by first structuring the data.  
Furthermore, protocols for addressing the multiple comparisons problem should be 
made before data analysis is undertaken.   

The multiple comparison testing strategy should be based on a process that first groups and 
prioritizes outcomes. The structuring of the data should be specified during the design stage of 
the study and published before study data are collected and analyzed. Multiple comparisons 
corrections should not be applied blindly to all outcomes, subgroups, and treatment alternatives 
considered together. This approach would produce unnecessarily large reductions in the 
statistical power of the tests. Rather, the testing strategy should strike a reasonable balance 
between testing rigor and statistical power.  

 
Specific plans for structuring the data and addressing the multiple comparisons issue will 

depend on the study objectives. However, the testing strategy described next pertains broadly to 
impact evaluations that are typically conducted in the education field. 
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II. GUIDELINES FOR DEVELOPING A STRATEGY FOR MULTIPLE TESTING 

1. Delineate separate outcome domains in the study protocols. 

Outcome domains should be delineated using theory or a conceptual framework that relates 
the program or intervention to the outcomes. The domains should reflect key clusters of 
constructs represented by the central research questions of the study.   

 
The outcome domains, for example, could be defined by grouping outcomes that are deemed 

to have a common latent structure (such as test scores in particular subject areas, behavioral 
outcomes, or measures of classroom practices) or grouping outcomes with high correlations. 
Domains could also be defined for the same outcomes measured over time (for example, test 
scores collected at various follow-up points). Domains could pertain to specific population 
subgroups (for example, if the intervention is targeted primarily to students with particular 
characteristics, such as English language learners). 

  
 

2. Define confirmatory and exploratory analysis components prior to data analysis. 
 

 The confirmatory analysis should provide estimates whose statistical properties can be stated 
precisely. The goal of this analysis is to present rigorous tests of the study�s central hypotheses 
that are specified in the study protocols. The confirmatory analysis must address multiple 
comparison issues and must have sufficient statistical power to address the main research 
questions. This analysis could consist of two parts: (1) testing for impacts for each outcome 
domain separately, and (2) jointly testing for impacts across outcome domains. These analyses 
do not necessarily need to include all domains.   
 

The purpose of the exploratory analysis is to examine relationships within the data to 
identify outcomes or subgroups for which impacts may exist. The goal of the exploratory 
analysis is to identify hypotheses that could be subject to more rigorous future examination, but 
cannot be examined in the present study because they were not identified ahead of time or 
statistical power was deemed to be insufficient. Results from post hoc analyses are not 
automatically invalid, but, irrespective of plausibility or statistical significance, they should be 
regarded as preliminary and unreliable unless they can be rigorously tested and replicated in 
future studies. 

 
 

3. For domain-specific confirmatory analyses, conduct hypothesis testing for domain 
outcomes as a group.  

Outcomes will likely be grouped into a domain if they are expected to measure a common 
latent construct (even if the precise psychometric properties of the domain �items� are not 
always known in advance). Thus, conducting tests for domain outcomes as a group will measure 
intervention effects on this common construct. Combining outcomes that each tap the same latent 
construct could also yield test statistics with greater statistical power than if individual outcomes 
were examined one at a time. 
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A composite t-test approach is recommended for testing global hypotheses about a domain.  
Under this approach, significance testing is performed on a single combination of domain 
outcomes. This procedure accounts for multiple comparisons by reducing the domain outcome to 
a single composite measure. This approach addresses the question �Relative to the status quo, did 
the intervention have a statistically significant effect on a typical domain outcome or common 
domain latent factor?� Appendix C discusses possible options for defining weights to construct 
composite outcome measures.  

 
A statistically significant finding for a composite measure provides confirmatory evidence 

that the intervention had an effect on the common domain latent construct. When statistical 
significance of the composite has been established, a within-domain exploratory analysis could 
be conducted using unadjusted p-values to identify specific domain outcomes that contributed to 
the significant overall effect. The significance of a particular outcome does not provide 
confirmatory evidence about the domain as a whole, but provides information that could be used 
to help interpret the global findings.  

 
If the impact on the composite measure is not statistically significant, it is generally not 

appropriate to examine the statistical significance of the individual domain outcomes. However, 
if such analyses are performed, they must be qualified as exploratory.  

 
 

4. Use a similar testing strategy if the confirmatory analysis involves assessing 
intervention effects across domains.  

Providing confirmatory evidence about intervention effects for each domain separately may 
satisfy research objectives in some studies. However, if an intervention is to be judged based on 
its success in improving outcomes in one or more domains, the study may wish to obtain 
confirmatory summative evidence about intervention effects across domains. For instance, if test 
score and school attendance outcomes are delineated into separate domains, it may be of interest 
to rigorously test whether the intervention improved outcomes in either domain (or in both 
domains).  In these cases, the study may wish to conduct hypothesis tests when the domains are 
considered together.   

 
The appropriate use of multiplicity adjustments for such analyses will depend on the main 

research questions for assessing overall intervention effects. For example, the research question 
of interest may be �Did the intervention have an effect on each domain?� In this case, multiple 
comparisons corrections are not needed; separate t-tests should be conducted at the α 
significance level for each domain composite outcome, and the null hypothesis of no treatment 
effect in at least one domain would be rejected if each composite impact is statistically 
significant. This approach applies a very strict standard for confirming intervention effects. 

 
The research question could instead be �Did the intervention have an effect on any 

domain?� In this case, multiplicity corrections are warranted. Different domains will likely tap 
different underlying latent factors and dimensions of intervention effects. Thus, rather than 
conducting a t-test on an aggregate composite measure across domains (which could be difficult 
to interpret), hypothesis testing could be conducted for each domain composite individually 
using the recommended statistical adjustment procedures discussed in Appendix B. The null 
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hypothesis of no treatment effect in each domain would then be rejected if any domain impact is 
statistically significant after applying the adjustment procedures.  
 
 
5. Multiplicity adjustments are not required for exploratory analyses.  

 
For exploratory analyses, one approach is to conduct unadjusted tests at the α level of 

significance. However, to minimize the chance of obtaining spurious significant findings, 
researchers may wish to apply multiplicity adjustments for some exploratory analyses if the data 
can be structured appropriately and statistical power levels are deemed to be tolerable.  

 
Study reports should explicitly state that exploratory analyses do not provide rigorous 

evidence of the intervention�s overall effectiveness. Results from post hoc analyses should be 
reported as  providing preliminary information on relationships in the data that could be subject 
to more rigorous future examination. These qualifications apply even if multiple comparisons 
correction procedures are used for exploratory analyses. 

 
 

6. Specify which subgroups will be part of the confirmatory analysis and which ones will 
be part of the exploratory analysis.   
 
If the study seeks to make rigorous claims about intervention effects for specific population 

subgroups, this should be specified in the study protocols and embedded in the confirmatory 
analysis strategy. To limit the multiple testing problem, only a limited number of educationally 
meaningful subgroups should be included in the analysis. The direction of the expected subgroup 
effects should be specified and the exact subgroup definitions should be defined explicitly at the 
outset to avoid post hoc data-dependent definitions. Furthermore, to ensure treatment-control 
group balance for each subgroup, efforts should be made to conduct random assignment within 
strata defined by the subgroups. The case for including subgroups in the confirmatory analysis is 
stronger if there is a priori reason to believe that treatment effects differ across the subgroups.  

 
The testing strategy for the subgroup analysis needs to address the simultaneous testing of 

multiple subgroups and outcomes and should link to the key study research questions. For 
example, suppose that hypotheses are postulated about intervention effects on a composite 
outcome across gender and age subgroups. Suppose also that the two key research questions are 
(1) �Is the intervention more effective for boys than girls?� and (2) �Is the intervention more 
effective for older than younger students?� In this case, it is appropriate to examine whether 
intervention effects differ by gender (age) by conducting F-tests on treatment-by-subgroup 
interaction terms that are included in the regression models. If the gender and age subgroups are 
to be considered together, a multiple comparisons adjustment procedure could be applied to the 
p-values from the various subgroup tests (see Appendix B).   

 
Hypothesis tests of differential subgroup effects are appropriate if subgroup results are to be 

used to target future program services to specific students. In this case, the standard of 
confirmatory evidence about the subgroup findings should be set high. It is generally accepted in 
the medical literature that tests of interactions are more appropriate for subgroup analyses than 
separate, subgroup-specific analyses of treatment effects, because declarations of statistical 
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significance are often associated with decision making (Brookes et al. 2001, Rothwell 2005, 
Gelman and Stern 2006).  

 
There may be instances in education research, however, where the key research question is 

�Did the intervention have an effect on a composite outcome for a specific subgroup in 
isolation?� In this case, multiplicity adjustments are not warranted, because program effects are 
to be examined for a single subgroup that is specified in advance. Multiplicity adjustments, 
however, are necessary for hypothesis tests that address the following research questions: �Did 
the intervention have an effect for either younger or older students?� or �Did the intervention 
have an effect for any gender or age subgroup?� Results from these tests, however, must not be 
interpreted as providing information about differential effects across subgroups.    

 
 Impact findings for subgroups that are not part of the confirmatory analysis should be 
treated as exploratory. Furthermore, post hoc subgroup analyses must be qualified as such in the 
study reports.  
 
 
7. Apply multiplicity adjustments in experimental designs with multiple treatment 

groups.  
 

A rigorous standard of evidence should be applied in designs with multiple treatment groups 
before concluding that some (for example, specific reading curricula) are preferred over others. 
The confirmatory testing strategy for these designs must be specified prior to data analysis. The 
strategy could include global tests of differences across treatments, or tests of differences 
between specific treatment pairs that could be used to rank treatments. The strategy should also 
address simultaneous testing of multiple treatments, outcomes, and subgroups (if pertinent).  As 
discussed in Appendix B, multiplicity adjustment procedures have been developed for situations 
where multiple treatments are compared to each other or to a common control group. 
 
 
8. Design the evaluation to have sufficient statistical power for examining intervention 

effects for all prespecified confirmatory analyses.   
 
Statistical power calculations for the confirmatory analysis must account for multiplicity. 

The determination of appropriate evaluation sample sizes will depend on the nature of the 
confirmatory analysis. For example, for domain-specific confirmatory analyses, the study should 
have sufficient power to detect impacts for composite domain outcomes. Similarly, if subgroup 
analyses are part of the confirmatory testing strategy, the power analysis should account for the 
simultaneous testing of multiple subgroups and multiple outcomes, and similarly for designs 
with multiple treatment groups. Brookes et al. (2001) show that if a study has 80 percent power 
to detect the overall treatment effect, the sample needs to be at least four times larger to detect a 
subgroup-by-treatment interaction effect of the same magnitude.        
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9. Qualify confirmatory and exploratory analysis findings in the study reports. 
 

There is no one way to present p-values from the multiple comparisons tests that will fit the 
needs of all evaluation reports. In some instances, it may be preferable to present adjusted p-
values in appendices and the unadjusted p-values in the main text, whereas in other instances, it 
may be preferable to present adjusted p-values in the main text or in footnotes. The reporting of 
adjusted or unadjusted confidence intervals could also be desirable.  

 
Some users of study reports may have a narrow interest in the effectiveness of the 

intervention for a specific outcome, subgroup, or treatment alternative. Where interest focuses on 
a specific contrast in isolation, the usual t-test conducted at significance level α is the appropriate 
test (and unadjusted p-values should be examined to assess statistical significance). This does not 
necessarily mean, however, that unadjusted p-values should be reported for all analyses to 
accommodate readers with myriad interests. Rather, study results should be presented in a way 
that best addresses the key research questions specified in the study protocols.     

    
It is essential that results from the confirmatory and exploratory analyses be interpreted and 

qualified appropriately and that the presentation of results be consistent with study protocols.  
Confirmatory analysis findings should be highlighted and emphasized in the executive summary 
of  study reports.  
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APPENDIX A 

PANEL MEMBERS ATTENDING THE MULTIPLE COMPARISONS MEETINGS 
 

 
Attended 2007 Meeting  

Panel Members Affiliation February  July December

Chairs     

Phoebe Cottingham IES ! ! ! 

Rob Hollister Swarthmore College ! ! ! 

Rebecca Maynard University of Pennsylvania ! !  

     
Participants     
Steve Bell Abt Associates ! ! ! 

Howard Bloom MDRC ! ! ! 

John Burghardt Mathematica Policy Research, Inc. ! ! ! 

Mark Dynarski Mathematica Policy Research, Inc. ! ! ! 

Andrew Gelman Columbia University !   

David Judkins Westat ! ! ! 

Jeff Kling Brookings Institution !  ! 

David Myers American Institutes for Research ! !  

Larry Orr Abt Associates ! ! ! 

Peter Schochet Mathematica Policy Research, Inc. ! ! ! 
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APPENDIX B 
 

INTRODUCTION TO MULTIPLE TESTING 
 
 
 This appendix introduces the hypothesis testing framework for this report, the multiple 
testing problem, statistical methods to adjust for multiplicity, and some concerns that have been 
raised about these solutions. The goal is to provide an intuitive, nontechnical discussion of key 
issues related to this complex topic to help education researchers apply the guidelines presented 
in the report. A comprehensive review of the extensive literature in this area is beyond the scope 
of this introductory discussion. The focus is on continuous outcomes, but appropriate procedures 
are highlighted for other types of outcomes (such as binary outcomes). The appendix concludes 
with recommended methods.1 
 
 
1. The Hypothesis Testing Framework 
  
 In this report, it has been assumed that a classical (frequentist) hypothesis testing approach 
is used to analyze the data; this is the testing strategy that is typically used in IES evaluations. 
This section highlights key features of this approach. Appendix D summarizes key features of 
the alternative Bayesian testing approach. 
  
 To describe the classical approach, it is assumed that treatment and control groups are 
randomly selected from a known population and that data on multiple outcomes are collected on 
each sample member. For contrast j, let Tjµ  and Cjµ  be population means for the treatment and 
control groups (or two treatment groups), respectively, and let j Tj Cjδ µ µ= − be the population 
average treatment effect (impact). In the classical framework, population means and, hence, 
population impacts are assumed to be fixed. 
 
 Statistical analysis under this approach usually centers on a significance test�such as a two-
tailed t-test�of a null hypothesis H0j: 0jδ = versus the alternative hypothesis H1j: 0jδ ≠ .2 The 
type I error rate�the probability of rejecting H0j given that it is true�is typically set at α = 5 
percent for each test. Evaluation sample sizes are typically determined so that statistical power�
the probability of rejecting H0j given that it is false�is 80 percent if the true impact is equal to a 
value that is deemed to be educationally meaningful or realistically attainable by the 
intervention.  
 

                                                 
1Kirk (1994) provides an excellent introduction to the basics of statistical inference and multiple testing. 

Westfall et al. (1999), Shaffer (1995), and Hsu (1996) are excellent sources for more detailed discussions of the 
multiple comparisons problem. Savitz and Olshan (1995) discuss the multiple comparisons issue in the context of 
interpreting epidemiologic data.  

2Under a one-tailed test, the alternative hypothesis is H1i: 0jδ > if larger values of the outcome are desirable or 

H1j: 0jδ < if smaller values of the outcome are desirable. 
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 Under this framework, a null hypothesis is typically rejected (that is, an impact is declared 
statistically significant) if the p-value for the statistical test is less than 5 percent, or equivalently, 
if the 95 percent confidence interval for the contrast does not contain zero. This is a frequentist 
approach, because in hypothetical repeated sampling of population subjects to the treatment and 
control groups, 95 percent of the constructed confidence intervals would contain the true, fixed 
population impact. Probabilistic statements can be made about the random confidence interval 
but not about the fixed impact.  
 
 
2. What Is the Multiple Testing Problem? 
 
 Researchers typically perform many simultaneous hypothesis tests when analyzing 
experimental data. Multiple tests are conducted to assess intervention effects (treatment-control 
differences) across multiple outcomes (endpoints). In some evaluations, multiple tests are also 
conducted to assess differences in intervention effects across multiple treatment groups (such as 
those defined by various reading or math curricula) or population subgroups (such as student 
subgroups defined by age, gender, race/ethnicity, or baseline risk factors).  
 
 In such instances, separate t-tests for each contrast are often performed to test the null 
hypothesis of no impacts, where the type I error rate is typically set at α = 5 percent for each test. 
Thus, for each test, the chance of erroneously finding a statistically significant impact is 5 
percent. However, when the �family� of hypothesis tests are considered together, the 
�combined� type I error rate could be considerably larger than 5 percent. This is the heart of the 
multiple testing problem.  
 
 For example, suppose that the null hypothesis is true for each test and that the tests are 
independent.  Then, the chance of finding at least one spurious impact is 1 − (1 − α)N , where N is 
the number of tests. Thus, the probability of making at least one Type I error is 23 percent if 5 
tests are conducted, 64 percent for 20 tests, and 92 percent for 50 tests (Table B.1). 
 
 

TABLE B.1 
 

CHANCES OF FINDINGS SPURIOUS IMPACTS FOR INDEPENDENT TESTS 
 

Number of Independent Tests 
With True Null Hypotheses 

Probability That at Least One t-Test    
Is Statistically Significant   

5 0.23 
10 0.40 
20 0.64 
50 0.92 

 
 

The definition of the combined type I error rate has implications for the strategies used to 
adjust for multiple testing and for interpreting the impact findings.  The next section discusses 
the most common definitions found in the literature and provides numerical examples. 
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a. Definitions of the Combined Type I Error Rate 
 
The two most common definitions of the combined Type I error rate found in the literature 

are the (1) familywise error rate (FWER) and (2) false discovery rate (FDR):  
 
 
• The FWER, defined by Tukey (1953), has traditionally been the focus of research in 

this area. The FWER is the probability that at least one null hypothesis will be 
rejected when all null hypotheses are true. For example, when testing treatment-
control differences across multiple outcomes, the FWER is the likelihood that at least 
one impact will be found to be significant when, in fact, the intervention had no effect 
on any outcome. As discussed, the FWER is 1 − (1 − α)N for independent tests, where 
N is the number of tests (dependent tests are discussed below). 

• The FDR, defined by Benjamini and Hochberg (1995), is a more recent approach for 
assessing how errors in multiple testing could be considered. The FDR is the expected 
proportion of all rejected null hypotheses that are rejected erroneously. Stated 
differently, the FDR is the expected fraction of significant test statistics that are false 
discoveries. 

 
Table B.2 helps clarify these two error rates. Suppose that multiple tests are conducted to 

assess intervention effects on N study outcomes and that M null hypotheses are true (M is 
unobservable). Suppose further that based on t-tests, Q null hypotheses are rejected and that A, B, 
C, and D signify cell counts when t-test results are compared to the truth. The counts Q and A to 
D are random variables.  

 
TABLE B.2 

 
THE NUMBER OF ERRORS WHEN TESTING MULTIPLE HYPOTHESES 

 
 Results from Hypothesis Tests 

(Observed) 
 

Truth (Unobserved) H0j Is Not Rejected H0j Is Rejected Total 

H0j Is True (No Impact)  A B M 

H0j Is False (Beneficial or Harmful  Impacts) C D (N −M) 

Total (N − Q) Q N 

 
 
In Table B.2, the FWER is the probability that the random variable B is at least 1 among the 

M null hypotheses that are true. The FDR equals the expected value of /B Q , where /B Q is 
defined to equal 0 if Q = 0.3  If all null hypotheses are true, then B = Q and the FDR and FWER 
are equivalent, otherwise the FDR is smaller than or equal to the FWER. 

 

                                                 
3Mathematically, the FDR equals ( / | 0) ( 0)E B Q Q P Q> > . 
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The two error rates have a different philosophical basis. The FWER measures the likelihood 
of a single erroneous rejection of the null hypothesis across the family of tests. Researchers who 
focus on the FWER are concerned with mistakenly reporting any statistically significant 
findings. The concerns are that unwarranted scientific conclusions about evaluation findings 
could be made as a result of even one mistake and that researchers may select erroneous 
significant findings for emphasis when reporting and publishing results.   

 
The rationale behind the FDR is that a few erroneous rejections may not be as problematic 

for drawing conclusions about the family tested when many null hypotheses are rejected as they 
would be if only a few null hypotheses are rejected. The rejection of many null hypotheses is a 
signal that there are real differences across the contrasted groups. Thus, researchers might be 
willing to tolerate more false positives (that is, larger values for B) if realized values for Q were 
large than if they were small. Under this approach, conclusions regarding intervention effects are 
to be based on the preponderance of evidence; the set of discoveries is to be used to reach an 
overall decision about the treatment. For those who adopt this approach, controlling the FWER is 
too conservative because, if many significant effects are found, a few additional errors will not 
change the overall validity of study findings.  

 
 Finally, variants of the FWER and FDR have been proposed in the literature.  For example, 
Gordon et al. (2007) discuss a variant of the FWER�the per family error rate (PFER)�which is 
the expected number of type I errors that are made (that is, the expected value of B in Table B.2). 
For instance, the PFER equals 5 if 5 of all tests with true null hypotheses are expected to be 
statistically significant. Gordon et al. (2007) argue that the use of the PFER (which focuses on  
expectations) rather than the FWER (which focuses on probabilities) could yield tests with more 
statistical power while maintaining stringent standards for type I error rates across the family of 
tests. Storey (2002) introduced a variant of the FDR�the positive false discovery rate (pFDR)�
which is the expected value of /B Q  given that Q is positive. He argues that this measure may be 
more appropriate in some instances. 

 
 

b. Quantifying the FWER and FDR 
 
To demonstrate the relationship between the FDR and the FWER, simulated data were 

generated on N mean outcomes for samples of 1,000 treatment and 1,000 control group 
members. Data for mean outcome j were obtained as random draws from a normal distribution 
with standard deviation 1 and with mean µCj for controls and µTj for treatments. The impacts         
(µTj − µCj) were set to 0 for M outcomes with true null hypotheses and to 0.125 for (N − M) 
outcomes with false null hypotheses; the 0.125 value was set so that the statistical power of the 
tests was 80 percent. Each individual hypothesis was tested using a two-tailed t-test at the 5 
percent significance level and the test statistics were generated independently. Each simulation 
involved 10,000 repetitions. Simulations were conducted for N = 5, 10, 20, and 50 and for 

/M N  = 100, 80, 50, and 20 percent. 
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Table B.3 displays the simulation results.  The main results are as follows: 
 
 
• The FWER increases substantially with the number of tests.  If all null hypotheses 

are true, the FWER is 23 percent for 5 independent tests, 64 percent for 20 
independent tests, and 92 percent for 50 independent tests.  

• The FWER and FDR are equivalent if all null hypotheses are true; otherwise, the 
FDR is less than the FWER.  Thus, procedures that control the FWER also control 
the FDR, but the reverse does not necessarily hold. Differences between the FDR and 
FWER become larger as (1) the number of tests increases and (2) the number of true 
null hypotheses decreases (that is, when many differences across the contrasted 
groups truly exist).  

 
TABLE B.3 

 
FWER AND FDR VALUES FOR INDEPENDENT TESTS 

 

Number of Tests 
Percentage of Tests with True       
Null Hypotheses (No Impacts) FWER FDR 

5 100 0.23 0.23 
10 100 0.40 0.40 
20 100 0.64 0.64 
50 100 0.92 0.92 

    
5 80 0.19 0.12 

10 80 0.34 0.15 
20 80 0.56 0.17 
50 80 0.87 0.19 

    
5 50 0.12 0.05 

10 50 0.23 0.05 
20 50 0.40 0.05 
50 50 0.72 0.05 

    
5 20 0.05 0.02 

10 20 0.10 0.02 
20 20 0.19 0.02 
50 20 0.40 0.02 

 
 Note:  FWER and FDR values were calculated using simulated data as described in the text.   
 
  
 These results suggest that the FDR is a less conservative measure than the FWER, especially 
if a considerable fraction of all null hypotheses are false. Thus, as demonstrated below, methods 
that control the FDR could yield tests with greater statistical power than those that control the 
FWER. The choice of which error criterion to control is important and must be made prior to the 
data analysis. 

 



 

 15  

3. What Are Statistical Solutions to the Multiple Testing Problem? 
 

 A large body of literature describes statistical methods to adjust type I errors for multiple 
testing (see, for example, the books by Westfall et al. 1999, Hsu 1996, and Westfall and Young 
1993). The literature suggests that there is not one method that is preferred in all instances. 
Rather, the appropriate measure will depend on the study design, the primary research questions 
that are to be addressed, and the strength of inferences that are required.  

 
This section briefly summarizes the literature in this area. Methods that control the FWER 

are discussed first, and methods that control the FDR are discussed second. Statistical packages 
(such as SAS) can be used to apply many of these methods.  
 
 
a. Methods for FWER Control  

 
Until recently, most of the literature on multiple testing focused on methods to control the 

FWER at a given α level (that is, methods to ensure that the FWER ≤ α). The most well-known 
method is the Bonferroni procedure, which sets the significance level for individual tests at α/N, 
where N is the number of tests.  

 
The Bonferroni procedure controls the FWER when all null hypotheses are true or when 

some are true and some are false (that is, it provides �strong� control of the FWER). This feature 
differs from another well-known procedure�Fisher�s protected least significant difference 
(LSD)�where an overall F-test across the tests is first conducted at the α level and further 
comparisons about individual contrasts are conducted at the α level only if the F-test is 
significant (Fisher 1935). Fisher�s LSD controls the FWER only when all null hypotheses are 
true and, thus, provides �weak� control of the FWER. This means that Fisher�s LSD may not 
control the FWER for second-stage individual hypotheses.4 The same issue applies to other 
multiple-stage tests, such as the Newman-Keuls (Newman 1939, Keuls 1952) and Duncan (1955) 
methods. 

 
The Bonferroni method applies to both continuous and discrete data, controls the FWER 

when the tests are correlated, and provides adjusted confidence bounds (by using α/N rather than 
α in the calculations). Furthermore, it is flexible because it controls the FWER for tests of joint 
hypotheses about any subset of N separate hypotheses (including individual contrasts). The 
procedure will reject a joint hypothesis H0 if any p-value for the individual hypotheses included 
in H0 is less than α/N. The Bonferroni method, however, yields conservative bounds on type I 
error and, hence, has low power.  

 
Many modified and sometimes more powerful versions of the Bonferroni method have been 

developed that provide strong control of the FWER. We provide several examples: 
 

                                                 
4For example, suppose that there are 10 tests and that the null hypothesis is true for 9 tests.  Suppose also that 

the true contrast for the 10th test is so large that the null hypothesis for the composite F-test would always be 
rejected.  In this case, the type I error rate would not be controlled for the second-stage t-tests, because there would 
be a 37 percent chance that these second-stage tests would reject at least one of the 9 tests with true null hypotheses.       
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• �idák (1967) developed a slightly less conservative bound where the significance 

level for individual tests is set at 1 − (1 − α)1/N rather than α/N. This method has 
properties similar to those of the Bonferroni method and is slightly more powerful, 
although it does not control the FWER in all situations in which test statistics are 
dependent.  

• Scheffé (1959) developed an alternative procedure where two means are declared 
significantly different if | | ( 1) ( ; 1, )t N F Nα ν≥ − − , where t is the t-statistic and F(.) 
is the α-level critical value of the F distribution with (N − 1) numerator and ν 
denominator degrees of freedom. This procedure has the nice property that if the F-
test for the global hypothesis is insignificant, then the Scheffé method will never find 
any mean difference to be significant. The procedure applies also to all linear 
combinations of contrasts. It tends to be more powerful than the Bonferroni method if 
the number of tested contrasts is large (more than 20), but tends to be less powerful 
than the Bonferroni method for fewer tests.  

• Holm (1979) developed a sequential �step-down� method: (1) order the p-values from 
the individual tests from smallest to largest, p(1) ≤ p(2)�≤ p(N), and order the 
corresponding null hypotheses H0(1), H0(2),�,H0(N);  (2) define k as the minimum j 
such that p(j) > α / (N − j + 1); and (3) reject all H0(j) for j = 1,�,(k − 1). This 
procedure is more powerful than the Bonferroni method because the bound for this 
method sequentially increases whereas the Bonferroni bound remains fixed. The 
Holm method controls the FWER in the strong sense, but cannot be used to obtain 
confidence intervals.  

• Hochberg (1988) developed a �step-up� procedure that involves sequential testing 
where p-values are ordered from largest to smallest (rather than vice versa as for the 
Holm test). The method first defines k as the maximum j such that p(j) ≤ α/(N− j + 1), 
and then rejects all H0(j) for j = 1,.., k. This procedure is more powerful than the Holm 
method, but the control of the FWER is not guaranteed for all situations in which the 
test statistics are dependent (although simulation studies have shown that it is 
conservative under many dependency structures).  

• Rom (1990) derived a step-up procedure similar to Hochberg�s procedure that uses 
different cutoffs and has slightly more power because it exactly controls the FWER at 
α for independent test statistics.        

 
Bootstrap and permutation resampling methods are alternative, computer-intensive methods 

that provide strong control of the FWER (see, for example, Westfall and Young 1993 and 
Westfall et al. 1990). These methods incorporate distributional and correlational structures across 
tests, so they tend to be less conservative than the other general-purpose methods and, hence, 
may have more power.  Furthermore, they are applicable in many testing situations. These 
methods can be applied as follows:  
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• Generate a large number of pseudo data sets by selecting observations with 
replacement (for the bootstrap methods) or without replacement (for the permutation 
methods). The sampling should be performed without regard to treatment status. 
Instead, sampling is performed for the combined research groups, and sampled 
observations are randomly ordered and proportionately split into pseudo-research 
groups.   

• For each iteration, calculate pseudo-p-values for each t-test and store the minimum 
pseudo-p-value across tests.   

• The adjusted p-value for an individual contrast is the proportion of iterations where 
the minimum pseudo-p-value is less than or equal to the actual p-value for that 
contrast.  

• Significance testing is based on the adjusted p-values. 

 
The intuition behind this procedure is that the distribution of the maximum t-statistic 

(minimum p-value) provides simultaneous confidence intervals that apply to all tests under the 
null hypothesis. The resampling methods use the data to estimate this distribution, which yields 
the multiplicity-adjusted p-values. In essence, a hypothesis test is rejected if the actual t-statistic 
value for that test is in the tail of the maximum t-statistic distribution.   

 
Alternative methods to control the FWER have been developed when the design contains 

several treatment and control groups. The Tukey-Kramer (Tukey 1953, Kramer 1956) method is 
applicable if all pairwise comparisons of treatment and control means are of primary interest. If 
comparisons with a single control group are of primary interest, the Dunnett (1955) method is 
appropriate. These methods account for the dependence across test statistics due to the repetition 
of samples across contrasts. 

 
The use of planned orthogonal contrasts is another method that adjusts for dependency when 

T treatment and control groups are compared to each other (see, for example, Bechhofer and 
Dunnett 1982). To describe this procedure, let iY  be a mean outcome (composite) for research 

group i and let 
1

T

j ji i
i

C c Y
=

= ∑ , where cji are constants such that 
1

( 1,..., ( 1))0
T

ji
i

j Tc
=

= −=∑ . The Cjs 

represent a family of (T-1) contrasts (linear combinations) of the iY s. Mutually orthogonal 

contrasts arise if sample sizes are the same in each treatment condition and 
1

0
T

ji ki
i

c c
=

=∑ for all 

j k≠ .  A property of orthogonal contrasts is that the total sum of squares across the T research 
groups can be partitioned into (T-1) sums of squares for each orthogonal contrast.   

 
Significance testing can be performed for each orthogonal contrast using the multiple 

comparisons adjustment procedures discussed above. An advantage of this method is that testing 
problems associated with dependent test statistics disappear. Furthermore, if T is large, the use of 
orthogonal contrasts requires fewer test statistics than the Tukey-Kramer procedure, thereby 
reducing the multiple comparisons problem.  
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The use of planned orthogonal contrasts may be desirable if they correspond to key research 
questions and can be easily interpreted. However, this approach may not be appropriate if the 
key contrasts of interest are not mutually orthogonal.   

 
Finally, special tests for controlling the FWER have been developed for binary or discrete 

data (see, for example, Westfall et al. 1999).  Resampling methods or a modified Bonferroni 
method (Westfall and Wolfinger 1997) can be used in these instances. An alternative is the 
Freeman-Tukey Double Arcsine Test (Freeman and Tukey 1950).   

 
 

b. Methods for FDR Control 
 
Benjamini and Hochberg (1995) showed that when conducting N tests, the following four-

step procedure will control the FDR at the α level:  
 
 
1. Conduct N separate t-tests, each at the common significance level α. 

2. Order the p-values of the N tests from smallest to largest, where p(1) ≤ p(2) ≤�≤ p(N) 
are the ordered p-values. 

3. Define k as the maximum j for which ( )j
jp

N
α≤ . 

4. Reject all null hypotheses Ho(j)  j = 1, 2, �, k.  If no such k exists, then no hypotheses 
are rejected. 

 
 This �step-up� sequential procedure, which has become increasingly popular in the 
literature, is easy to use because it is based solely on p-values from the individual tests. 
Benjamini and Hochberg (1995) first proved that this procedure�which is hereafter referred to 
as the BH procedure�controls the FDR for continuous test statistics and Benjamini and 
Yekutieli (2001) proved that this procedure also controls the FDR for discrete test statistics.  
 
 The original result in Benjamini and Hochberg (1995) was proved assuming independent 
tests corresponding to the true null hypotheses (although independence was not required for test 
statistics corresponding to the false null hypotheses). Benjamini and Yekutieli (2001) proved, 
however, that the BH procedure also controls the FDR for true null hypotheses with �positive 
regression dependence.� This technical condition is satisfied for some test statistics of interest, 
such as one-sided multivariate normal tests with nonnegative correlations between tests, but is 
not satisfied for other statistics. More research is needed to assess whether the BH procedure is 
robust when independence and positive regression dependency are violated. 
 
 
 
 
 
 



 

 19  

4. What Are Problems with These Solutions? 
 

 There are two related concerns with the adjustment procedures discussed above: (1) they 
result in tests with reduced statistical power and (2) they could result in tests with even less 
power when the test statistics are correlated (dependent).   
 
 
a. Losses in Statistical Power 
 
 The statistical procedures that control for multiplicity reduce type I error rates for individual 
tests. Consequently, these adjustment procedures result in tests with reduced statistical power�
the probability of rejecting the null hypothesis given that the null hypothesis is false. Stated 
differently, these adjustment methods reduce the likelihood that the tests will identify true 
differences between the contrasted groups. The more conservative the multiple testing strategy, 
the greater the power loss.  
 
 Table B.4 demonstrates power losses based on the simulations discussed above when the  
FWER is controlled using the Bonferroni and Holm procedures and the FDR is controlled using 
the BH procedure.  The key findings from the table are as follows: 

 
 
• Power losses can be large using the Bonferroni and Holm procedures. The power 

of each method decreases with the number of tests. In the absence of multiple 
comparison adjustments, statistical power is 80 percent. Applying the Bonferroni 
correction reduces the power to 59 percent for 5 tests, 41 percent for 20 tests, and 31 
percent for 50 tests. The Holm and Bonferroni procedures yield tests with similar 
power, but the Holm procedure performs slightly better if many impacts truly exist.    

• The power of the BH procedure increases with the number of intervention effects 
that truly exist.  Statistical power is 55 percent if 80 percent of null hypotheses are 
true, compared to 74 percent if only 20 percent of null hypotheses are true. The power 
of the BH procedure does not vary with the number of tests. 

• Power losses are smaller for the BH procedure than for the Bonferroni and Holm 
procedures. Differences between the procedures become larger as (1) the number of 
tests increases and (2) the number of true null hypotheses decreases. Thus, power 
losses can be considerably smaller under the BH procedure if many contrasts truly 
differ.  

 
These results suggest that multiplicity adjustments involve a tradeoff between type I and 

type II error rates. Conservative testing strategies, such as the Bonferroni and similar 
methods, can result in considerable losses in the statistical power of the tests, even if only a 
small number of tests are performed. The less conservative BH test has noticeably more 
power if a high percentage of all null hypotheses are false. 
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TABLE B.4 
 

 STATISTICAL POWER WITH MULTIPLICITY ADJUSTMENTS 
 
 

  Statistical Power  

   FWER Control  FDR Control 

Number of 
Tests 

Percentage of Tests 
with True Null 

Hypotheses 
No 

Adjustments Bonferroni  Holm  
Benjamini-

Hochberg (BH) 

5 80 0.80 0.59 0.59 0.55 
10 80 0.80 0.50 0.50 0.55 
20 80 0.80 0.41 0.42 0.55 
50 80 0.80 0.31 0.32 0.55 

     
5 50 0.80 0.59 0.61 0.67 

10 50 0.80 0.50 0.53 0.67 
20 50 0.80 0.41 0.44 0.67 
50 50 0.80 0.31 0.33 0.67 

     
5 20 0.80 0.59 0.66 0.74 

10 20 0.80 0.50 0.57 0.74 
20 20 0.80 0.41 0.47 0.74 
50 20 0.80 0.31 0.35 0.74 

 
Notes:  Error rates and power levels were calculated using simulated data as described in the text.  The 
            calculations assume independent test statistics.  
 
 

b. Dependent Test Statistics 
 
 Individual test statistics are likely to be related in many evaluations of educational 
interventions. Consider testing for intervention effects across many outcomes measured for the 
same subjects. In this case, the test statistics are likely to be correlated, because a common latent 
factor may affect the outcomes for the same individual and treatment effects may be correlated 
across outcomes. As another example, if multiple treatment alternatives are compared to each 
other or to the same control group, the test statistics are correlated because of the overlap in the 
samples across pairwise contrasts.  
 
 Some of the adjustment methods discussed above (such as the Bonferroni and Holm 
methods) control the FWER at a given α level when tests are correlated.  However, for some 
forms of dependency, these methods may adjust significance levels for individual tests by more 
than is necessary to control the FWER. This could lead to further reductions in the statistical 
power of the tests.  For example, if test correlations are positive and large, each test statistic is 
providing similar information about intervention effects, and thus, would likely produce similar  
p-values. Consequently, in these situations, fewer adjustments to type I error rates are needed to 
control the FWER.     
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 This problem can be demonstrated using the simulations discussed above. FWER values 
were calculated for 10 tests, all with true null hypotheses, when the correlation between all test 
statistics (ρ) ranged from 0 to 1. FWER values were calculated for unadjusted t-tests and using 
the Bonferroni and Holm adjustment methods (Table B.5). 

 
 

TABLE B.5 
 

FWER VALUES FOR 10 POSITIVELY CORRELATED TESTS  
 

  Adjusted Tests 
Correlation 
Between Tests (ρ) 

FWER for 
Unadjusted Tests Bonferroni Method Holm  Method 

0.0 0.40 0.05 0.05 

0.2 0.38 0.05 0.05 

0.4 0.32 0.04 0.04 

0.6 0.24 0.03 0.03 

0.8 0.18 0.02 0.02 

1.0 0.05 0.005 0.005 
 
     Notes:  Error rates were calculated using simulated data as described in the text.  The calculations  
                             assume that all null hypotheses are true.   
 

 
The unadjusted FWERs become smaller as ρ increases (Table B.5). The FWER reduces 

from 0.40 for independent tests (ρ = 0) to 0.24 when ρ = 0.6 to 0.18 when ρ = 0.8. As a result, 
the Bonferroni and Holm methods �overcorrect� for multiplicity in this example and yield test 
statistics with reduced power.    
 

Several methods discussed above adjust for dependency across test statistics. For example, 
the resampling methods incorporate general forms of correlational structures across tests, and the 
Tukey-Kramer, Dunnett, and Orthogonal Contrast methods account for specific forms of 
dependency when various treatments are compared to each other or to a common control group.  
Thus, power gains can be achieved using these methods. In addition, as discussed, the BH 
method controls the FDR under certain forms of dependency and for certain test statistics, but 
not for others. 

  
   

5. Summary and Recommendations  
 

The testing guidelines discussed in this report minimize the extent to which multiple testing 
adjustment procedures are needed by focusing on significance tests for composite domain 
outcomes. However, adjustment procedures for individual tests are needed for some testing 
situations, such as between-domain analyses, subgroup analyses, and designs with multiple 
treatment groups. Thus, this section provides general recommendations on suitable methods, 
although it should be emphasized there is not one statistical procedure that is appropriate for all 
settings; applicable methods will depend on the key research questions and the structure of the 
hypothesis tests.    
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 To control the FWER, the bootstrap or permutation resampling methods are applicable for 
many testing situations because they incorporate general distributional and dependency 
structures across tests (Westfall and Young 1993). In educational evaluations, correlated test 
statistics are likely to be common. Thus, the resampling methods are recommended because they 
could yield tests with greater statistical power than other general-purpose methods that typically 
do not adjust for dependent data. The main disadvantages of the resampling methods are that 
they are difficult to explain and are computer intensive.  
 
 For FWER control, the Holm (1979) and Bonferroni procedures may also be suitable 
general-purpose methods. These methods (and especially the Bonferroni procedure) are easier to 
explain and apply than the resampling methods. However, although the Bonferroni and Holm 
methods control the FWER for dependent test statistics, they do not account for the dependency 
structure across tests and, thus, tend to have lower statistical power than the resampling methods. 
Statistical power is somewhat greater for the Holm method than the Bonferroni method if many  
impacts truly exist across the contrasts.  
 

Hsu (1996) recommends alternative procedures to control the FWER in certain testing 
situations. The Tukey-Kramer (Tukey 1953, Kramer 1956) method is recommended if all 
pairwise comparisons of means are of primary interest, and the Dunnett (1955) method is 
recommended if multiple treatments are compared to a common control group. These methods 
can yield greater statistical power than other methods because they account for the exact nature 
of the dependency across test statistics due to the repetition of samples across contrasts. The use 
of orthogonal contrasts is another possibility if they correspond to key research questions. 

  
The BH procedure (Benjamini and Hochberg 1995) controls the FDR, which is a different 

criterion than the FWER for defining the overall type I error rate across the family of tests. As 
discussed, if many beneficial impacts truly exist, the BH procedure tends to have more statistical 
power than the methods that control the FWER by allowing more type I errors. The philosophy 
of the BH procedure is that if many impacts are found to be statistically significant, a few more 
false positives will not change the overall validity of study conclusions about intervention 
effects. However, if few impacts are statistically significant (signaling that many null hypotheses 
are true), the BH and FWER-controlling methods are similar.   

 
There are several issues that need to be considered when using the BH procedure.  First, it 

may not control the FDR for all forms of dependency across test statistics. Second, the BH 
method may be less appropriate for some confirmatory analyses than methods that control the 
FWER, because it applies a less stringent standard for controlling type I errors. On the other 
hand, the BH method may be appealing because it operates under the philosophy that 
conclusions regarding intervention effects are to be based on the preponderance of evidence and 
could lead to increases in the statistical power of the tests. The choice of whether the study aims 
to control the FDR or FWER is an important design issue that needs to be specified prior to the 
data analysis. 
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APPENDIX C 
 

WEIGHTING OPTIONS FOR CONSTRUCTING  
COMPOSITE DOMAIN OUTCOMES 

 
 
The testing guidelines discussed in this report focus on significance tests for composite 

domain outcomes, which are combinations of individual domain outcomes. Thus, a critical issue 
is how to weight individual domain outcomes to construct composites.  

 
There is a large literature over many decades and across multiple disciplines on methods to 

combine multiple pieces of information to create composites (see, for example, Kane and Case 
2004; Wainer and Thissen 1993;  Wang and Stanley 1970; Gulliksen 1950; Wilks 1938).  Similar 
to the multiple comparisons literature, there is no consensus on the �optimal� method that should 
be used to form composites that fits all circumstances. Rather, procedures should be selected that 
are best suited to the types of domain outcome measures that are under investigation and key 
research questions.  

 
Composite formation rules should be specified in the study protocols. In developing rules, 

potential correlations among the domain outcomes should be considered. As discussed, outcome 
measures will likely be grouped into a domain if they are expected to measure a common latent 
construct. In situations where this objective is satisfied, different composite formation methods 
should yield similar composites (Landis et al. 2000).  However, if the domain outcomes tap 
multiple factors, the choice of method could affect the resulting composites, in which case it may 
be appropriate to reconsider domain definitions. Thus, issues pertaining to the selection of 
weights for composite formation are similar to issues pertaining to the delineation of outcome 
domains. 

   
This appendix briefly discusses composite formation methods that are found in the literature 

that fit our context.  A full literature review is beyond the scope of this introductory discussion.   
 
For the ensuing discussion, it is assumed that a domain contains N outcome measures for 

each sample member, and that the vector Yi pertains to outcome measure values for outcome i. 
The outcomes are assumed to be standardized to have mean 0 and standard deviation 1 to avoid 
the composite being dominated by component outcomes with large variances, although the 
weighting schemes discussed below apply also to raw outcomes. A composite domain outcome, 

C, is defined as follows: 
1

N

i i
i

C wY
=

= ∑ , where iw are �nominal� weights assigned to each outcome.  

The many interrelated methods of weighting that have been used in education research involve 
selecting the iw s to maximize various criterion functions, as discussed next. 

 
Regression weights.  Suppose a pertinent outside data source contains information on a 

well-established observable validity criterion and the outcome measures under investigation. 
These data could then be used to construct weights based on the relationship between the 
criterion measure and the outcomes. Examples of external criteria are measures of school 
readiness, longer-term test scores, high school graduation status, college attendance status, and 
earnings. 
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Regression weights can be obtained by regressing the criterion measure (the dependent 
variable) on the component outcomes (the independent variables) using standard multivariate 
regression methods. The parameter estimates on the outcomes could then be used as weights for 
composite formation using the evaluation sample. The larger the correlation between an outcome 
and the criterion and the more independent an outcome is of other outcomes, the larger is the 
weight, all else equal. This approach yields weights that minimize the mean squared prediction 
error in the estimation sample.  

 
The advantage of this method is that predictive validity is often recognized as a more 

important criterion than reliability in evaluating measurement procedures (Kane and Case 2004, 
Wang and Stanley 1970). However, this method can be used only if pertinent data are available 
to estimate regression weights that apply to the population under investigation and that are based 
on large samples to ensure the stability of results. Furthermore, even if these conditions are met, 
the results need to be interpreted carefully, because the estimation sample used to develop the 
weights may not necessarily yield optimal weights for the population from which the sample is 
drawn or for other samples drawn from the same population (Raju et al. 1997).   

 
Finally, this approach is likely to be most useful when the outcomes (predictors) are 

relatively independent. This independence condition, however, will not typically be satisfied in 
our context. Thus, the regression approach may be more suited to forming composites for a 
between-domain analysis than a within-domain analysis.     

 
Natural or unit weights.  For this approach, the N outcomes are simply summed or 

averaged to form the composite�that is, iw  is set to 1 (or a constant) for each outcome. This 
method is based on the �agnostic� criterion that each outcome is equally important. It has the 
advantage that is easy to apply and understand. Bobko et al. (2007) show that this approach can 
be appropriate under many circumstances.  

 
The use of unit weights does not necessarily imply, however, that each outcome contributes 

equally to the overall variance of the composite. The contribution of Yi to the variance of C is 
2( )

N

j i
i i j ijw w w ρ

≠

+ ∑ , where ijρ  is the correlation between Yi and Yj. With unit weights, this 

contribution reduces to (1 )
N

j i
ijρ

≠

+ ∑ , so that the �effective� weight for each component outcome 

will depend on its average correlation with other component outcomes. If average correlations 
are similar across outcomes, the effective and nominal unit weights will be similar.   

 
A variant of this method is to select weights to ensure that each variable contributes equally 

to the total variance of the composite. This can be done by setting N equations of the form 
2( )

N

j i
i i j ijw w w ρ

≠

+ ∑ to a constant and solving iteratively for iw  (Wilks 1938).  

 
 
 



 

 25  

Expert judgment or subjective weights. Another approach to developing composites is to 
employ a content-oriented strategy in which outcomes are assigned to composites based on 
existing theory or rational judgment. Under this approach, theory or expert guidance obtained 
prior to data analysis is used to determine the relative �importance� of each outcome to the 
underlying domain construct. This approach could also be used if some outcomes have more 
�information� than others. For example, for combining tests, weights could be assigned based on 
the length of the tests or the nature of the questions (Wainer and Thissen 1993). For instance, 
larger weights could be assigned to multiple-choice than true-false questions. 

 
Maximum reliability weights. Another approach is to select weights to maximize the 

reliability of the composite. This approach is often discussed in the test theory literature for 
combining achievement test scores or items (Kane and Case 2004, Wainer and Thissen 1993).   
This approach has received attention because reliability of a measure is a necessary, although not 
sufficient, condition for validity of a measure. 

 
Reliability is defined as the proportion of the total variance in the composite which is true-

composite variance. Thus, maximum reliability weights can be found by maximizing the 
variance of the  composite between subjects (between-subject variance) relative to the variance 
across outcomes within subjects (within-subject variance). Wang and Stanley (1970) and 
Gulliksen (1950) discuss procedures for obtaining these weights. Item response theory (IRT) is a 
more recent version of reliability weighting that simultaneously provides weights and a scale for 
the item responses (see, for example, Lord 1980).    

 
Equal correlation weights.  Another criterion function is to select weights that equalize the 

correlation between each outcome measure and the composite. The correlation between Yi and 
the composite C can be expressed as follows: 

 

(1)
( )

N

i j ij
j i

iC

w w

Var C

ρ
ρ ≠

+
=

∑
. 

  
Because the denominator in (1) is the same for each outcome, equal correlation weights can be 

calculated by setting N equations of the form ( )
N

j i
i j ijw w ρ

≠

+ ∑ to a constant and solving iteratively 

for iw .  This procedure is logically consistent only if all outcomes are positively correlated.    
 
Factor analysis weights.  Another approach for forming composites is to conduct a factor 

analysis on the component outcomes and to use the single factor solution as the composite 
outcome. If the data support a multi-factor solution, domain reconfigurations may be considered. 
Criteria for assessing the appropriate factor structure must be specified in the study protocols and 
adhered to in the analysis.   

 
Alternatively, factor loadings from factor analyses conducted on other relevant datasets 

(perhaps with larger norming samples) could be applied as weights to form composites.  Issues 
pertaining to the feasibility of this approach and the interpretation of results are similar to those 
discussed above for regression weighting.  
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Multivariate analysis of variance (MANOVA) weights. MANOVA methods are 
commonly used to control the Type I error rate when examining treatment effects on multiple 
outcome measures (see, for example, Harris 1975). In our context, the MANOVA approach 
would involve conducting omnibus F-tests to address the research question: Did the intervention 
have a statistically significant effect on any outcome measure within the domain? This is a 
different question than the one addressed by the composite t-test approach: Did the intervention 
have a statistically significant effect on a  common domain latent construct? 

 
Because they address different research questions, these two approaches lead to different 

weighting schemes for combining the outcome measures. Under the MANOVA approach, 
weights are found to maximize the test statistics pertaining to impacts, whereas under the 
composite t-test approach, weights are found to best identify a common domain construct.  

 
To demonstrate the implied weighting scheme for the MANOVA approach, assume that the 

N domain outcomes for each subject are sampled from a joint multivariate normal distribution 
with mean vector µT for mT treatments and µC for mC controls and common variance-covariance 
matrix Ω. Consider the composite impact estimate, CI: 

 

   
1

N

i i
i

CI w I w I
=

′= =∑ , 

 
where Ii is the impact estimate (mean treatment-control difference) for outcome i and I and w are 
Nx1 column vectors of impacts and weights, respectively. The squared t-statistic can then be 
written as follows: 
 

 2 1�(2) ( ) [ ]( ) [ ] ( )
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+

, 

 
where �Ω  is the usual estimator for Ω  based on sample variances and covariances.   
 

The omnibus F-statistic that is typically produced by statistical software packages can be 
obtained by first finding the weights w* that maximize (2) subject to the normalizing restriction 

* *� 1w w′ Ω = , and then inserting w* into (2).  This procedure yields Hotelling�s T2 statistic: 

 2 1�[ ]
( )

T C

T C

m mT I I
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−′= Ω
+

, 

 
which is just a multiple of the usual F-statistic.5   
 

                                                 
5Specifically, 2F kT=  where ( 1) / ( 2)T C T Ck m m N N m m= + − − + − ; F is distributed as 

( , 1)T CF N m m N+ − − .   
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 Thus, all else equal, MANOVA methods tend to place more weight on standardized 
outcomes with larger impacts (positive or negative) than smaller impacts. Stated differently, this 
method tends to select weights to maximize the chance of finding significant impact findings.   
 
 The MANOVA approach is not recommended for the confirmatory analysis for several 
reasons. First, because domain outcomes are likely to tap the same underlying construct, it seems 
more appropriate to examine treatment effects on a composite measure of this construct than to 
test whether treatment effects exist for any of its components. A second reason is that it is 
difficult to develop a confirmatory theory that would result in outcomes being weighted 
according to the size of their impacts. Instead, the MANOVA procedure is a post hoc, data-
driven method that is more suited to exploratory analyses.    
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APPENDIX D 
 

THE BAYESIAN HYPOTHESIS TESTING FRAMEWORK 
 
 

 This appendix summarizes key features of the Bayesian testing approach, which is the main 
alternative to the classical testing approach. The use of these methods in IES studies is an 
important area for future research.  Spiegelhalter et al. 1994 and Gelman and Tuerlinckx 2000 
provide a more detailed discussion of the Bayesian framework. 
  

In the Bayesian view, assessing the effects of an intervention is a dynamic process in which 
any individual study takes place in a context of continuously increasing knowledge. Initial 
beliefs about treatment effects are incorporated into the analysis and are expressed as a prior 
distribution. The prior distribution could be based on objective evidence or subjective judgment, 
and the shape and location of this distribution reflects the level of confidence in the prior 
information.  
 
 Using Bayes theorem, the prior distribution of the impact, ( )jf δ , is combined with the 
conditional distribution of the observed data given the impact, ( | )jg data δ , to obtain a posterior 
(updated) distribution of the treatment effect: 
 
  ( | ) ( | ) ( )j j jh data g data fδ δ δ∝ . 
 
The Bayesian impact estimate is the mean of the posterior distribution. If both the prior and 
conditional distributions are normally distributed, the mean of the posterior distribution is a 
weighted average of the observed impact and the mean of the prior distribution (where weights 
are inversely related to variances of the likelihood and prior distributions). Thus, the Bayesian 
approach �shrinks� the observed impact estimate to the mean of the prior distribution. The 
Bayesian approach addresses the following question: �What is the updated evidence on the 
impact, once we combine the previous with the new evidence?�  

 
Differences between the Bayesian and classical analyses include the incorporation of prior 

beliefs, the absence of p-values, and the absence of the idea of hypothetical repetitions of the 
sampling process. The posterior estimate of the impact and its uncertainty as measured by a 
credibility interval is analogous to the classical differences-in-means point estimate and its 
associated confidence interval. This credibility interval, however, has a direct interpretation in 
terms of belief; probabilistic statements can be made about the size of the impact. Those who 
misinterpret classical confidence intervals as the region in which the effect is likely to lie are, in 
essence, adopting a Bayesian point of view. 

 
Gelman et al. (2007) argue that multiple comparisons issues typically are less of a concern 

in Bayesian modeling than in classical inference. This is because under the Bayesian approach, 
the impact estimates for the various contrasts and their credibility intervals are shifted toward 
each other. This leads to wider confidence bands under the Bayesian approach.  For example, 
under the classical approach, the usual 95 percent confidence interval for the impact, 
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j Tj Cjδ µ µ= − , is 2[( ) 1.96 2 / ]Tj Cjy y nσ− ± , where Tjy and Cjy  are sample means of the 

outcome measure for treatments and controls, respectively; 2σ is the variance of the outcome 
measure; and n is the treatment (control) group sample size. If the likelihood and prior 
distributions are normally distributed, the 95 percent Bayesian credibility interval based on the 

posterior distribution is
2

2
2

/[( ) 1.96 (2 / )(1 )]Tj Cj
ny y n σσ

τ
− ± + , where 2τ is the variance of the 

prior distribution for jδ . Thus, statistical significance is less likely to be found under the 
Bayesian than classical approach. Consequently, the Bayesian approach is conservative and 
appropriately accounts for multiple comparisons in many instances.   

 
More research is needed about the applicability of the Bayesian approach in IES-funded 

experimental studies. In particular, a critical issue is whether credible prior distributions on 
intervention effects can be specified. This will depend on the credibility of the empirical 
evidence on the effects of similar interventions to the ones being tested. It will also depend on 
the extent to which theory can be used to structure the multidimensional data so that empirical 
Bayes methods can be used to formulate prior distributions from the data. For example, prior 
distributions for a specific site (or outcome) could be estimated using the combined impact 
estimates for similar sites (or outcomes) if there is a theoretical justification for these groupings. 
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