MATHEMATICA Policy Research

PRESENTATIONS

Joint Statistical Meetings

"Statistics: Making Better Decisions"

August 9–13, 2015 • Seattle, WA

Legend: Washington State Convention Center = CC

Sunday, August 9			
Time	Room	Session	Presenter/ Author(s)
► 2:00-3:50 pm	CC-210	Statistical Inference—Government Statistics Section Paper Presentation: Comparison of Frequentist and Bayes- ian Methods for Testing Measurement Invariance Between Groups Abstract: A key assumption of comparing latent constructs between groups is that the measurement properties of the instrument used to elicit these constructs is invariant. A lack of measurement invariance (MI) indicates that the groups interpret measures differently and simple comparisons of mean scores could confound the results. A common statistical method used for MI testing is multigroup confirmatory factor analysis estimated via frequentist inference (ML or WLS). This traditional approach implies that the variance- covariance structures between the groups are exactly equal. This restrictive assumption often hampers comparison of factor means across groups with different subject or cultural background. A recent Bayesian MI approach (Muthén and Asparouhov 2013) introduced the concept of approximate invariance in which one can reasonably expect some differences across the groups. In the Bayesian MI approach, parameters (factor loadings or intercepts and slopes) are themselves considered variables with a specific distribution defined by empirical or non-empirical priors. Approximate MI allows for small differences (.0105 standard deviations) between parameters otherwise constrained as equal in the exact application.	Dmitriy Poznyak
	CC-2A	Mode Effects—Survey Research Methods Section	Frank Potter, Chair

Monday, August 10			
Time	Room	Session	Presenter/ Author(s)
▶7:00-8:15 am		Health Policy Statistics Section A.M. (Roundtable Discussion)	Frank Yoon, Organizer
▶8:30-10:20 am	CC-304	Student Paper Awards—Health Policy Statistics Section	Frank Yoon, Organizer and Chair
	CC-4C1	SPEED: Topics in Statistical Methods and Applications, Part 1—Survey Research Methods Section, Section in Marketing, Section on Statistics and the Environment, and Section on Statistics in Epidemiology	
		Paper Presentation: Current Methods of Weight Trimming in Sample Surveys Abstract: In survey sampling practice, unequal sampling weights (the inverse of the selection probabilities) can be both beneficial and deleterious. Extreme variation in the sampling weights can result in excessively large sampling variances when the data and the selection probabilities are not positively correlated. In addition, extreme variation in the weights can result from unplanned subsampling, nonresponse adjustments, or post-stratification. In some survey situations, the survey statistician might impose a trimming strat- egy for excessively large weights. Because of the weight trimming, the survey statistician will usually expect an increased potential for a bias in the estimate and a decrease in the sampling variance. The ultimate goal of weight trim- ming is to reduce the sampling variance more than enough to compensate for the possible increase in bias and, thereby, reduce the mean square error. In this presentation, I will discuss current methods to identify the appropriate trimming values and provide guidance on selecting the final trimming level, which might be different from the values the algorithms suggest.	Frank Potter
▶10:30 am-12:20 pm	CC612	Modern Techniques for Handling Missing Data—Survey Research Methods Section	
		Paper Presentation: Multiple Imputation Using the Weighted Finite Population Bayesian Bootstrap Abstract: Accounting for multistage survey sample design features when generating datasets for multiple imputation is a non-trivial task. Thus, mul- tiple imputation often ignores complex sample designs and assumes simple random sampling when generating imputations, even though failing to account for complex sample design features is known to damage inference. Here we extend a recently-developed weighted finite population Bayesian bootstrap procedure (Dong et al. 2014) to generate synthetic populations conditional on complex sample design data that can be treated as simple random samples at the imputation. We develop two forms of this method: one in which probabilities of selection are known at the first and second stage of the design, and the other in which only the final weight based on the product of the two probabilities are known. We show via simulation study that this method has advantages in terms of bias, mean square error, and coverage properties over methods in which sample designs are ignored, with little loss in efficiency even when compared with correct fully parametric models.	Hanzhi Zhou, co-author

Monday, August 10 (Continued)			
Time	Room	Session	Presenter/ Author(s)
▶11:35 am–12:20 pm		SPEED: Topics in Statistical Methods and Applications, Part 2—Survey Research Methods Section, Section in Marketing, Section on Statistics and the Environment, and Section on Statistics in Epidemiology	
		Paper Presentation: Current Methods of Weight Trimming in Sample Surveys Abstract: In survey sampling practice, unequal sampling weights (the inverse of the selection probabilities) can be both beneficial and deleterious. Extreme variation in the sampling weights can result in excessively large sampling variances when the data and the selection probabilities are not positively correlated. In addition, extreme variation in the weights can result from unplanned subsampling, nonresponse adjustments, or post-stratification. In some survey situations, the survey statistician might impose a trimming strategy for excessively large weights. Because of the weight trimming, the survey statistician will usually expect an increased potential for a bias in the estimate and a decrease in the sampling variance. The ultimate goal of weight trimming is to reduce the sampling variance more than enough to compensate for the possible increase in bias and, thereby, reduce the mean square error. In this presentation, I will discuss current methods to identify the appropriate trimming values and provide guidance on selecting the final trimming level, which might be different from the values the algorithms suggest.	Frank Potter
▶12:30-1:50 pm		Health Policy Statistics Section P.M. (Roundtable Discussion)	Frank Yoon, Organizer
▶2:00-3:50 pm	CC-611	Important Issues in Clinical Trials, Meta-Analysis and Diag- nostic Medicine—Health Policy Statistics Section	
		Paper Presentation: How to Reliably Quantify the Scientific Soundness of Quality Measures? A Monte Carlo Simulation Attempt Abstract: Under the Affordable Care Act, there are increasing needs to identify and develop a core set of health care quality measures to improve the quality of care and evaluate the performance of health-related entities across the health care system. Such measure development projects typi- cally request tremendous effort and coordination in planning, development, testing, implementation, and validation, therefore, careful design is required at the planning stage to obtain adequate data to ensure the statistical validity of quality measures and reporting. One key task for measure developers is to reliably quantify the scientific soundness (such as data validity and measure reliability) of these measures using data from test sites and report the results to policy makers. Classic formulae using normal-based assumptions from asymptotic theory may be either difficult to derive under a complex design, or inappropriate under unbalanced data structure in practice. In this talk, we will present a statistical framework and case studies on how Monte Carlo simulations, as an alternative tool, could provide a more transparent guid- ance on improving scientific rigor and facilitating decision making.	Fei Xing Sheng Wang, co-author
► 3:00-4:30 pm		Committee on Gay and Lesbian Concerns in Statistics Business Meeting	Diane Herz, Chair

Tuesday, August 11				
Time	Room	Session	Presenter/ Author(s)	
▶7:00-8:15 am		Health Policy Statistics Section A.M. (Roundtable Discussion)	Frank Yoon, Organizer	
▶8:00–9:30 am	CC- Ball- room 6ABC	ASA President's Address and Founders and Fellows Recognition Frank Potter Induction as an ASA Fellow		
▶8:30–10:20 am	CC-4C1	 SPEED: Health Policy and Mental Health Statistics, Part 1– Health Policy Statistics Section and Mental Health Statistics Section Paper Presentation: Developing Reliability-Adjusted Rates to 	Sheng Wang	
		Profile the Quality of Home- and Community-Based Services Delivered to Medicaid Beneficiaries Using an Empirical Bayes Framework Abstract: This paper focuses on a two-stage empirical Bayesian estimator of health care quality applied to count data with a high proportion of zeroes. A two-stage estimator to risk- and reliability-adjust measures is gaining popularity in federal and state policy. The first stage model accounts for dif- ferential risk among the patients, creating a risk-adjusted rate that might be subject to large standard errors due to small sample sizes in certain groups; therefore, at the second stage, risk-adjusted rates are pulled toward a prior under a Bayes framework to create a reliability-adjusted rate. We focus on the case in which the quality measure is the count of potentially preventable hospitalizations, for which many Medicaid beneficiaries have zero counts. We compare two likelihood models—normal and negative binomial—to profile state performance on the quality of home- and community-based services Medicaid beneficiaries receive. The model validation and diagnostic show that the three models have similar performance when all states have large sample sizes, but the negative binomial model outperforms the normal model when a subpopulation is considered.	Alex Bohl and Dejene Ayele, co-authors	
▶10:30-11:15 am		 SPEED: Health Policy and Mental Health Statistics, Part 2— Mental Health Statistics Section and Health Policy Statistics Section Paper Presentation: Developing Reliability-Adjusted Rates to Profile the Quality of Home- and Community-Based Services Delivered to Medicaid Beneficiaries Using an Empirical Bayes Framework Abstract: This paper focuses on a two-stage empirical Bayesian estimator of health care quality applied to count data with a high proportion of zeroes. A two-stage estimator to risk- and reliability-adjust measures is gaining popularity in federal and state policy. The first stage model accounts for dif- ferential risk among the patients, creating a risk-adjusted rate that might be subject to large standard errors due to small sample sizes in certain groups; therefore, at the second stage, risk-adjusted rates are pulled toward a prior under a Bayes framework to create a reliability-adjusted rate. We focus on the case in which the quality measure is the count of potentially preventable hospitalizations, for which many Medicaid beneficiaries have zero counts. We compare two likelihood models—normal and negative binomial—to profile state performance on the quality of home- and community-based services Medicaid beneficiaries receive. The model validation and diagnostic show that the three models have similar performance when all states have large sample sizes, but the negative binomial model outperforms the normal 	Sheng Wang Alex Bohl and Dejene Ayele, co-authors	

Tuesday, August 11 (Continued)			
Time	Room	Session	Presenter/ Author(s)
▶12:30-1:50 pm		Health Policy Statistics Section P.M. (Roundtable Discussion)	Frank Yoon, Organizer
		Paper Presentation: The Future of Public Use Data Abstract: Federal agencies have a long history of releasing data to the public, and they also have a legal obligation to protect the confidentiality of the individuals and organizations from which the data were collected. This roundtable will focus on the tension between federal open data initiatives and the need to protect data from disclosure. I will provide a brief summary of relevant federal legislation and directives, review important concepts in statistical disclosure limitation, discuss the potential threats to confidentiality, and invite speculation about the future of public use data.	John Czajka
▶2:00-3:50 pm	CC-401	Data Quality—Survey Research Methods Section	Barbara Carlson, Chair
Wednesday, Aug	gust 12		
Time	Room	Session	Presenter/ Author(s)
▶7:00-8:15 am		Health Policy Statistics Section A.M. (Roundtable Discussion)	Frank Yoon, Organizer
▶8:30–10:20 am	CC-306	Modern Statistical Methods for Observational Studies and Survey Data—Health Policy Statistics Section	
		Paper Presentation: Variable Ratio Matching with Fine Bal- ance in a Study of Peer Health Exchange Abstract: In observational studies, matched samples are created so that a treated group is similar to a matched control group on observed covariates. Often, matched samples consist of matched pairs. If a pair match fails to make treated and control units sufficiently comparable, alternate strategies include (1) matching a variable number of controls to each treated unit and (2) adopting fine balance constraints. Under fine balance, a nominal covari- ate is exactly balanced, but individual treated and control units might not be comparable on this variable. We propose a method that allows fine balance constraints while matching treated units to variable numbers of controls, which is not possible using existing network-based matching algorithms. We use the entire number to determine the optimal number of controls for each treated unit. Within entire-number strata, we then apply fine balance con- straints. We apply our method in an evaluation of Peer Health Exchange, an intervention in high schools designed to decrease risky health behaviors. We find that pair matching produces unsatisfactory balance, then demonstrate that a variable-ratio match with fine balance outperforms a variable-ratio match alone.	Frank Yoon, co-author
	CC-310	Online Surveys—Survey Research Methods Section	
		Paper Presentation: Alternative Methods for Inference Based on Nonprobability Samples: A Simulation Study Abstract: Online panel research is becoming increasingly popular due to its timeliness and cost-effectiveness. In particular, nonprobability-based or opt-in panels are becoming entrenched in market, medical, and polling research. Although different methods have been proposed to make infer- ence based on nonprobability samples—typically by combining data with a probability sample and through calibration—to date, few, if any, studies have compared the performance of these alternative methods within a com- mon context. Using an extensive simulation study, this paper considers an array of model-based methods for combining nonprobability and probability samples, and compares their inferential properties under different assump- tions. We assume a common set of auxiliary variables available for both the nonprobability sample and the probability sample and vary simulation design regarding the data quality of such auxiliary information as well as that of the probability sample. We aim to shed light on the promise of nonprobability- based web panel research by studying the relative reliability and utility of alternative inferential methods.	Hanzhi ∠hou

Wednesday, August 12 (Continued)				
Time	Room	Session	Presenter/ Author(s)	
▶10:30 am-12:20 pm	CC-3A	Sirken Award Session	John Czajka, Chair	
▶12:30-1:50 pm		Health Policy Statistics Section—Speaker with Lunch (Roundtable)	Frank Yoon, Organizer	
▶2:00-3:50 pm	CC-2B	JASA, Applications and Case Studies (Invited Session)		
► 2.00-3.30 pm		Paper Presentation: Semiparametric Bayesian Density Esti- mation with Disparate Data Sources: A Meta-Analysis of Global Childhood Undernutrition Abstract: Undernutrition, quantified using height-for-age z-scores, is an important contributor to childhood morbidity and mortality. Because all levels of mild, moderate, and severe undernutrition are of clinical and public health importance, it is of interest to estimate the shape of the z-scores' distributions. We present a finite mixture model that uses data on 4.3 million children to make annual estimates of these distributions for children in each of the world's 141 low- and middle-income countries. We incorporate both individual-level data and aggregated summary statistics from studies whose individual-level data were unavailable. We place a hierarchical Bayesian model on the mixture weights, which allows for nonlinear changes in time, and borrows strength in time, in covariates, and within and across regional country clusters to estimate where data are uncertain or missing. This work addresses three important problems that often arise in the field of global health monitoring. First, data are always incomplete. Second, different data sources commonly use different reporting metrics. Last, distributions, and especially their tails, are often of substantive interest.	Mariel Finucane	
	CC-2A	Imputation of Missing Data—Survey Research Methods Section	Donsig Jang, Chair	
	CC-3A	Sample Allocation—Survey Research Methods Section		
		Paper Presentation: Optimal Sampling Fractions for Two- Phase Sampling for Nonresponse in the Real World Abstract: Two-phase sampling has been around for decades. It is used to identify subpopulations of interest in the first phase of a survey, from which a random subsample is selected in the second phase for further data collec- tion. It is also used to randomly subsample survey nonrespondents for more intensive followup. In this context, nonrespondents in the frist phase are considered a subpopulation that is identified after data collection efforts have been completed with the initial mode and protocol. Though the more inten- sive second phase protocol is generally more expensive to implement than the first, it is expected to be more successful; however, budgetary constraints limit how many nonrespondents can be attempted this way. Hansen et al. (1953) provided optimal values for k, the fraction of phase 1 nonrespondents to be subsample of proportion k. However, these calculations assume that phase 2 methods result in 100 percent response when in reality that does not often happen. In this paper, I derive new optimum values for n and k under the more realistic scenario in which not all phase 2 attempts result in a response.	Barbara Carlson	

Thursday, August 13			
Time	Room	Session	Presenter/ Author(s)
▶8:30–10:20 am	CC-619	Tools for Policy: Bayesian Assessments to Support Decision Makers—Health Policy Statistics Section	Mariel Finucane, Organizer Randall Brown, Chair
		Paper Presentation: Hierarchical Bayesian Evaluation of Health System Change Using Administrative Data Abstract: Policymakers are tasked with making decisions under uncertainty. In practice, the frequentist framework for policy evaluation focuses on test- ing the hypothesis that program impacts are equal to zero. Stakeholders often view the resulting 'thumbs up-thumbs down' inference as restrictive. By contrast, the Bayesian evaluation framework provides intuitive, informa- tive, and probabilistic inference such as "There is a 70 percent chance that the intervention improved the outcome of interest by at least 5 percent." Fur- thermore, the conventional approach to policy evaluation often tests many hypotheses separately (for example, by outcomes, time periods, geographic regions). By contrast, a Bayesian model can piece together disparate data sources to obtain a more precise impact estimate, reducing the likelihood that important but modest-sized effects go unrecognized for lack of statisti- cal power. In this talk—using data from the evaluation of an initiative of the Affordable Care Act as a motivating example—we will summarize the ways in which Bayesian methods can provide a flexible and powerful tool for policy evaluation, and we will discuss the challenge and trade-offs of the Bayesian approach.	Frank Yoon Mariel Finucane, Lauren Vollmer, and Randall Brown, co-authors
▶10:30 am-12:20 pm	CC-614	New Methods for Survival Analysis—Biometrics Section	
		Paper Presentation: The Historical Cox Model Abstract: In this paper, we extend the Cox proportional hazards model to account for densely sampled time-varying covariates as historical functional terms. This approach allows the hazard function at any time t to depend not only on the current value of the time-varying covariate, but also on all previous values. The fundamental idea is to assume a bivariate coefficient function ?(s, t) that estimates a weight function that is applied to the full or partial covariate history up to t, and is allowed to change with t. Estimation is performed by maximizing the penalized partial likelihood, using a likelihood- based information criterion to optimize the smoothing parameter. Methods are applied to a study of in-hospital mortality among patients with acute respiratory distress syndrome in the intensive care unit.	Jonathan Gellar